por BrDias » Sex Fev 20, 2015 10:18
Ola amigos, como vao ?
esse é meu primeiro, espero que esteja no lugar e do jeito certo, com uma dúvida bem besta mas...
recebi a seguinte integral definida para resolver.
![\int_{1}^{2}\sqrt[]{x}.dx \int_{1}^{2}\sqrt[]{x}.dx](/latexrender/pictures/483b3d20ab436377dc072df41e887e29.png)
Resolvi da seguinte forma:
![\int_{1}^{2}\sqrt[]{x}.dx = \int_{1}^{2}{x}^{1/2} = \frac{{x}^{3/2}}{3/2} = \frac{2}{3}.{x}^{3/2} = \frac{2{X}^{3/2}}{3} = \int_{1}^{2}\frac{2\sqrt[]{x^3}}{3} \int_{1}^{2}\sqrt[]{x}.dx = \int_{1}^{2}{x}^{1/2} = \frac{{x}^{3/2}}{3/2} = \frac{2}{3}.{x}^{3/2} = \frac{2{X}^{3/2}}{3} = \int_{1}^{2}\frac{2\sqrt[]{x^3}}{3}](/latexrender/pictures/04f8a4a2fd98562fe3827485be88bbab.png)
chegando neste ponto, apliquei os limites e meu resultado sinal foi?
![\frac{4\sqrt[]{2}}{3} - \frac{2}{3} \frac{4\sqrt[]{2}}{3} - \frac{2}{3}](/latexrender/pictures/2a85a8abc62e59bba28275e6bf4fcc8e.png)
gostaria de uma avaliação de vocês, parece besta e deve ser mas fiquei na dúvida se esta correto.
desde já agradeço a atenção
grande abraco
-
BrDias
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Sex Fev 20, 2015 09:45
- Formação Escolar: GRADUAÇÃO
- Andamento: cursando
por Russman » Sáb Fev 21, 2015 01:16
Sim. Mas no último passo não se coloca mais o simbolo de integral definida.
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- (ESPCEX)duvida ""besta"'
por natanskt » Sex Nov 26, 2010 17:32
- 3 Respostas
- 4074 Exibições
- Última mensagem por DanielFerreira

Qua Dez 01, 2010 17:07
Matrizes e Determinantes
-
- Duvida Integral Definida
por douglasnickson » Dom Jul 03, 2016 01:39
- 5 Respostas
- 14446 Exibições
- Última mensagem por adauto martins

Ter Jul 05, 2016 15:25
Cálculo: Limites, Derivadas e Integrais
-
- [integral definida] - dúvida em exercício
por natanaelskt » Qua Jul 02, 2014 02:13
- 1 Respostas
- 1848 Exibições
- Última mensagem por e8group

Qua Jul 02, 2014 14:04
Cálculo: Limites, Derivadas e Integrais
-
- [Integração Definida] dúvida em integral com u.du
por Nicolas1Lane » Sáb Ago 30, 2014 20:36
- 3 Respostas
- 3273 Exibições
- Última mensagem por DanielFerreira

Dom Set 07, 2014 21:35
Cálculo: Limites, Derivadas e Integrais
-
- Duvida numa funçao definida por ramos
por AnaOliveira » Sáb Abr 30, 2011 16:54
- 12 Respostas
- 7053 Exibições
- Última mensagem por NMiguel

Dom Mai 01, 2011 19:35
Funções
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
(FGV) ... função novamente rs
Autor:
my2009 - Qua Dez 08, 2010 21:48
Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :
Assunto:
(FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25
Uma função de 1º grau é dada por

.
Temos que para

,

e para

,

.

Ache o valor de

e

, monte a função e substitua

por

.
Assunto:
(FGV) ... função novamente rs
Autor:
Pinho - Qui Dez 16, 2010 13:57
my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :
f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20
Assunto:
(FGV) ... função novamente rs
Autor:
dagoth - Sex Dez 17, 2010 11:55
isso ai foi uma questao da FGV?
haahua to precisando trocar de faculdade.
Assunto:
(FGV) ... função novamente rs
Autor:
Thiago 86 - Qua Mar 06, 2013 23:11
Saudações!
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b
Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.