• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Integral trigonométrica]

[Integral trigonométrica]

Mensagempor vitor_jo » Ter Fev 10, 2015 02:09

Senhores, uma questão do Guidorizzi,
\int_{0;\pi/3 }^{}{}sexcos²x dx [definida de 0 a pi/3]

Eu cheguei até -cos³x/3| de 1/2 a 1, mas não sei como proceder para o resultado (R.:7/24)

Também findei em uma outra, com sen^(6)x/6 | de 0 a 1/2 e não sei como seguir...

Obrigado desde já.
vitor_jo
Usuário Ativo
Usuário Ativo
 
Mensagens: 22
Registrado em: Qua Jan 14, 2015 05:36
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Economia
Andamento: cursando

Re: [Integral trigonométrica]

Mensagempor vitor_jo » Ter Fev 10, 2015 02:09

[é senxcos²x]
vitor_jo
Usuário Ativo
Usuário Ativo
 
Mensagens: 22
Registrado em: Qua Jan 14, 2015 05:36
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Economia
Andamento: cursando

Re: [Integral trigonométrica]

Mensagempor Russman » Ter Fev 10, 2015 04:00

A integral é

I =\int_{0}^{\frac{\pi}{3}}\sin(x) \cos^2(x)dx

[I =\int_{0}^{\frac{\pi}{3}}\sin(x) \cos^2(x)dx ]

Se sim, faça a substituição u(x) = \cos(x). Daí, du = - \sin(x) dx e

I =\int_{0}^{\frac{\pi}{3}}\sin(x) \cos^2(x)dx = -\int_{u(0)}^{u\left ( \frac{\pi}{3} \right )}u^2 du

cuja forma final é facilmente calculável.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: [Integral trigonométrica]

Mensagempor vitor_jo » Ter Fev 10, 2015 14:19

Quando você realiza essa substituição, tem de se mudar o intervalo, não?
De modo que cos(x)=u
cos0=1=u
cos(pi/3)=cos(60)=1/2=u
Ou seja, passo para a definida de 1/2 a 1.
A resposta não bate.
vitor_jo
Usuário Ativo
Usuário Ativo
 
Mensagens: 22
Registrado em: Qua Jan 14, 2015 05:36
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Economia
Andamento: cursando

Re: [Integral trigonométrica]

Mensagempor Russman » Ter Fev 17, 2015 18:15

Isto. Eu mudei o intervalo de integração como você disse, só deixei para você calcular.

A integral de x^2 é (1/3)x^3. De 1/2 até 1 será

(1/3)((1/8) - 1) = (1/3)(-7/8) = -7/24

O sinal negativo some com o negativo da mudança de variável.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: [Integral trigonométrica]

Mensagempor vitor_jo » Qua Fev 18, 2015 04:48

É vero, eu tinha me confundido. Obrigado.
vitor_jo
Usuário Ativo
Usuário Ativo
 
Mensagens: 22
Registrado em: Qua Jan 14, 2015 05:36
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Economia
Andamento: cursando

Re: [Integral trigonométrica]

Mensagempor Russman » Qua Fev 18, 2015 06:55

(:
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)