• Anúncio Global
    Respostas
    Exibições
    Última mensagem

momento de inercia

momento de inercia

Mensagempor Erico gremio » Ter Fev 10, 2015 11:21

ENCONTRE O MOMENTO DA INERCIA DE UM CONE CIRCULA RETO CUJO RAIO DA BASE E ALTURA MEDEM AMBOS 1 cm EM RELAÇÃO AO EIXO QUE PASSA PELO VERTICE E É PARALELO A BASE. CONSIDERE A DENSIDADE DO MATERIAL IGUAL A 1 g/cm².
Erico gremio
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Qui Abr 11, 2013 18:15
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura
Andamento: cursando

Re: momento de inercia

Mensagempor Cleyson007 » Ter Fev 10, 2015 15:09

Cara, isso vai te ajudar!

Imagem

Caso a imagem carregue pequena na tela segue o link: http://www.casimages.com.br/i/150210060 ... 9.png.html][IMG]http://nsae02.casimages.net/img/2015/02/10/mini_150210060729373619.png

Qualquer dúvida estamos aí :y:

Abraço
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.