por matheus36000 » Seg Fev 09, 2015 15:54
Se uma sala tem cinco portas, o número de maneiras distintas de se entrar nela por uma
porta e sair por outra diferente é:
a) 5 b) 10 c) 15 d) 20 e) 25
-
matheus36000
- Usuário Ativo

-
- Mensagens: 11
- Registrado em: Dom Dez 21, 2014 16:17
- Formação Escolar: ENSINO FUNDAMENTAL II
- Área/Curso: Ensino Médio
- Andamento: cursando
por Cleyson007 » Seg Fev 09, 2015 20:19
Olá, boa noite!
Para a porta de entrada existem 5 possibilidades.
Como já escolhemos uma porta para entrar, sobram-se 4 possibilidades para a saída.
Pelo Princípio Fundamental da Contagem temos: 5 * 4 = 20 possibilidades.
Bons estudos
-

Cleyson007
- Colaborador Voluntário

-
- Mensagens: 1228
- Registrado em: Qua Abr 30, 2008 00:08
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática UFJF
- Andamento: formado
por matheus36000 » Ter Fev 10, 2015 18:49
Cleyson007 escreveu:Olá, boa noite!
Para a porta de entrada existem 5 possibilidades.
Como já escolhemos uma porta para entrar, sobram-se 4 possibilidades para a saída.
Pelo Princípio Fundamental da Contagem temos: 5 * 4 = 20 possibilidades.
Bons estudos
Muito obrigado não tinha pensado desta maneira .
Se tiver um tempo visite este tópico please
viewtopic.php?f=149&t=15121
-
matheus36000
- Usuário Ativo

-
- Mensagens: 11
- Registrado em: Dom Dez 21, 2014 16:17
- Formação Escolar: ENSINO FUNDAMENTAL II
- Área/Curso: Ensino Médio
- Andamento: cursando
Voltar para Análise Combinatória
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Principio fundamental da contagem (I)
por my2009 » Ter Mai 10, 2011 19:51
- 1 Respostas
- 1907 Exibições
- Última mensagem por MarceloFantini

Ter Mai 10, 2011 21:38
Estatística
-
- Principio fundamental da contagem (II)
por my2009 » Ter Mai 10, 2011 19:54
- 1 Respostas
- 1833 Exibições
- Última mensagem por MarceloFantini

Ter Mai 10, 2011 21:30
Estatística
-
- Principio fundamental de contagem (III)
por my2009 » Ter Mai 10, 2011 19:58
- 3 Respostas
- 2184 Exibições
- Última mensagem por MarceloFantini

Ter Mai 10, 2011 21:35
Estatística
-
- principio fundamental da contagem
por vinicius reis » Dom Set 25, 2011 17:08
- 1 Respostas
- 1537 Exibições
- Última mensagem por Neperiano

Dom Set 25, 2011 19:52
Estatística
-
- Princípio Fundamental de Contagem
por gabryelc » Qua Mar 20, 2013 11:03
- 1 Respostas
- 2231 Exibições
- Última mensagem por marinalcd

Qua Mar 20, 2013 18:25
Análise Combinatória
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.