Função de uma variável que satisfaz a equação diferencial y"+y=0 e, que para x=0, a função e sua derivada tomam os valores 0 e 1 respectivamente.
Só que não me ajudou muito... Vocês poderiam me dar essa força.
(U.F.RS-1984) A negação da proposição "Para todo y, existe um x tal que y = sen(x)" é:
A) Para todo y, exite um x tal que y = sen(x).
B) Para todo y e para todo x, y = sen(x).
C) Existe um y e existe um x tal que y = sen(x).
D) Existe um y tal que, para todo x, y = sen(x).
E) Existe um y tal que, para todo x, y
sen(x).

é limitada superior e inferiormente por
e
, respectivamente. Assim, o domínio de
é
e sua imagem é
.
. Por exemplo, não existe nenhum x
.
,onde N(negaçao)...
...![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio. ![{0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20} {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}](/latexrender/pictures/c0100c6f4d8bdbb7d54165e6be7aff04.png)
da seguinte forma:
.
da seguinte forma:
.