• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Problema de lógica envolvendo Seno

Problema de lógica envolvendo Seno

Mensagempor Guga1981 » Seg Fev 02, 2015 21:25

Amigos, eu não consegui resolver essa. Vi na internet que 1o. Seno é a razão entre o cateto oposto a um ângulo de um triângulo retângulo e a hipotenusa. e 2o.
Função de uma variável que satisfaz a equação diferencial y"+y=0 e, que para x=0, a função e sua derivada tomam os valores 0 e 1 respectivamente.
Só que não me ajudou muito... Vocês poderiam me dar essa força.

(U.F.RS-1984) A negação da proposição "Para todo y, existe um x tal que y = sen(x)" é:

A) Para todo y, exite um x tal que y = sen(x).

B) Para todo y e para todo x, y = sen(x).

C) Existe um y e existe um x tal que y = sen(x).

D) Existe um y tal que, para todo x, y = sen(x).

E) Existe um y tal que, para todo x, y \neq sen(x).
Guga1981
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 53
Registrado em: Dom Jan 18, 2015 13:27
Localização: São Vicente-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática
Andamento: cursando

Re: Problema de lógica envolvendo Seno

Mensagempor Russman » Ter Fev 03, 2015 19:25

A função f(x) = \sin(x) é limitada superior e inferiormente por 1 e -1, respectivamente. Assim, o domínio de f(x) é x \in \mathbb{R} e sua imagem é x \in [ -1,1 \right ].

Portanto, não é verdade que para todo y real existe um x tal que y= \sin(x). Por exemplo, não existe nenhum x real tal que \sin(x) = 2.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Problema de lógica envolvendo Seno

Mensagempor adauto martins » Qui Fev 05, 2015 11:40

algebra das proposiçoes...
N(p e q)\Rightarrow N(p) ou N(q),onde N(negaçao)...
p=p/todo y,existe x...N(p)=p/um dado y,nao existe x...
q=y=senx...N(q)=y\neq senx...
entao dentre as alternativas dadas a q. melhor se adequa ao exposto acima seria a letra e)
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Lógica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.