• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Conjuntos - como resolver?

Conjuntos - como resolver?

Mensagempor Guga1981 » Ter Jan 20, 2015 16:08

Amigos, gostaria de postar um exercício, aqui, que tentei fazer, mas me parece que todas as alternativas estão certas, exceto a alternativa A e alternativa C.
Conto com a ajuda de vocês para solucionar essa dúvida.

Dados os conjuntos Ma = {n. a | n \in Naturais} e Mb = {n. b | n \in Naturais}, com a e b naturais não nulos, então Ma é subconjunto de Mb sempre que:
A) a for menor do que b.
B) b for menor do que a.
C) a for divisor de b.
D) b for divisor de a.
E) a e b forem pares.
Guga1981
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 53
Registrado em: Dom Jan 18, 2015 13:27
Localização: São Vicente-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática
Andamento: cursando

Re: Conjuntos - como resolver?

Mensagempor Russman » Qua Jan 21, 2015 01:32

O conjunto M_x=\left \{ n.x \ \left | n \in \mathbb{N}  \right \} representa o conjunto de todos os múltiplos inteiros do número x. Se x \in \mathbb{N} então este conjunto é, vulgarmente, a "tabuada" de x.

Daí, M_a é o conjunto de todos os múltiplos inteiros de a e M_b o conjunto de todos os múltiplos inteiros de b.

Assim, para que M_a seja subconjunto de M_b é preciso que todos os elementos de M_a sejam "encontrados" em M_b.

Ou seja, para qualquer elementos a.n_0 \in M_a é necessário que exista um n_1 tal que n_1.b = n_0 .a para todo n_0.

Logo, como b deve ser natural, é preciso que b seja tal que b=k.a com k natural, já que, daí,

n_1.k.a = n_0.a \Rightarrow n_1.k = n_0.

Portanto, b deve ser divisor de a.

Por exemplo, escolha a=2 e b=6.

Daí,

M_a=\left \{ 2,4,6,8,10,12,14,... \right \}
M_b=\left \{ 6,12,18,24,30,36,... \right \}

Note que , nesse caso, M_b é subconjunto de M_a pois a divide b. Para a situação contrária, que é o caso da questão, é o contrário: b divide a.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Conjuntos - como resolver?

Mensagempor Guga1981 » Qua Jan 21, 2015 16:08

Entendi! Obrigado!
Guga1981
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 53
Registrado em: Dom Jan 18, 2015 13:27
Localização: São Vicente-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática
Andamento: cursando


Voltar para Conjuntos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)