por Guga1981 » Dom Jan 18, 2015 13:50
Boa tarde, tenho a seguinte dúvida: Como resolver esta equação da VUNESP de 1988:
Se A = {x

Naturais | x = 4n, com n

Naturais}
B = {x

Naturais * |

= n, com n

Naturais}
então o número de elementos de A

B é:
a) 3 b) 2 c) 4 d) 6 e) 8
a resposta do gabarito é a letra b.
Já tentei somar as e equações, mas o resultado é n =
![\sqrt[2]{5} \sqrt[2]{5}](/latexrender/pictures/28fccd6e3bab3b28511a875ab32e94c3.png)
.
Editado pela última vez por
Guga1981 em Dom Jan 18, 2015 14:05, em um total de 1 vez.
-
Guga1981
- Usuário Parceiro

-
- Mensagens: 53
- Registrado em: Dom Jan 18, 2015 13:27
- Localização: São Vicente-SP
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática
- Andamento: cursando
-
por DanielFerreira » Dom Jan 18, 2015 13:57
Guga, no conjunto B figura o "n"?
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
por Guga1981 » Dom Jan 18, 2015 14:06
Sim, Dan! Desculpe, já corrigi!
-
Guga1981
- Usuário Parceiro

-
- Mensagens: 53
- Registrado em: Dom Jan 18, 2015 13:27
- Localização: São Vicente-SP
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática
- Andamento: cursando
-
por DanielFerreira » Dom Jan 18, 2015 14:19
Conjunto A: atribuindo valores a "n"... 0, 1, 2,...
A = {0, 4, 8, 12, 16, 20, 24, 28,...}
Conjunto B: atribuindo valores a "x" com exceção do zero e daqueles em a divisão por x não é exata.
B = {20, 10, 5, 4, 2, 1}
Como podes notar, A n B = {4, 20}.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
por Guga1981 » Ter Jan 20, 2015 01:54
Obrigado, Dan Jr! Ajudaste bastante! Valeu!
-
Guga1981
- Usuário Parceiro

-
- Mensagens: 53
- Registrado em: Dom Jan 18, 2015 13:27
- Localização: São Vicente-SP
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática
- Andamento: cursando
-
por DanielFerreira » Qui Jan 22, 2015 18:48
Não há de quê, meu caro!
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
Voltar para Conjuntos
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Conjuntos formados por equações (2)
por Guga1981 » Dom Jan 18, 2015 14:03
- 2 Respostas
- 1832 Exibições
- Última mensagem por Guga1981

Ter Jan 20, 2015 01:55
Conjuntos
-
- Quantos pode ser formados
por leticiapires52 » Qua Fev 25, 2015 20:25
- 1 Respostas
- 2158 Exibições
- Última mensagem por ednaldo raposeiro

Qua Fev 25, 2015 20:52
Probabilidade
-
- Conjuntos, Equações no campo dos Reais
por moyses » Ter Fev 07, 2012 12:44
- 5 Respostas
- 3599 Exibições
- Última mensagem por moyses

Qui Fev 09, 2012 20:32
Equações
-
- Conjuntos, Relações, Equações e Função Quadrática
por angeloka » Qui Out 21, 2010 21:17
- 12 Respostas
- 8754 Exibições
- Última mensagem por francisca

Seg Nov 22, 2010 10:29
Funções
-
- Conjuntos, Relações, Equações e Função Quadrática
por angeloka » Ter Nov 02, 2010 15:32
- 2 Respostas
- 1802 Exibições
- Última mensagem por angeloka

Ter Nov 02, 2010 18:31
Álgebra Elementar
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Thassya - Sáb Out 01, 2011 16:20
1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?
2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?
3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Neperiano - Sáb Out 01, 2011 19:46
Ola
Qual as suas dúvidas?
O que você não está conseguindo fazer?
Nos mostre para podermos ajudar
Atenciosamente
Assunto:
[Função] do primeiro grau e quadratica
Autor:
joaofonseca - Sáb Out 01, 2011 20:15
1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.
Em

substitui-se
m, substitui-se
y e
x por um dos pares ordenados, e resolve-se em ordem a
b.
2)Na equação

não existem zeros.Senão vejamos
Completando o quadrado,
As coordenadas do vertice da parabola são
O eixo de simetria é a reta

.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.
f(-7)=93
f(10)=59
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.