por Texorras » Sáb Jan 09, 2010 13:13
Boas pessoal,
Como consigo resolver esta primitiva ??
((x^2)+1)^3
Ja tou a bater com a cabeça nas paredes

-
Texorras
- Novo Usuário

-
- Mensagens: 5
- Registrado em: Sáb Jan 09, 2010 13:07
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Informatica
- Andamento: cursando
por D_Honda » Sáb Jan 09, 2010 14:15
Texorras escreveu:Boas pessoal,
Como consigo resolver esta primitiva ??
((x^2)+1)^3
Ja tou a bater com a cabeça nas paredes

Creio que seja assim:

Usei o Triângulo de Pascal.
Espero ter ajudado.
Qualquer coisa, estamos ai.
Diego.
-
D_Honda
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Qui Jan 07, 2010 22:30
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Bacharelado em Química
- Andamento: cursando
por Texorras » Sáb Jan 09, 2010 14:27
eu ja tinha usado essa expressao mas nao deu certo ... experimente primitivar voce .
-
Texorras
- Novo Usuário

-
- Mensagens: 5
- Registrado em: Sáb Jan 09, 2010 13:07
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Informatica
- Andamento: cursando
por Hel » Sáb Jan 09, 2010 14:54
Alguém pode me ajudar a resolver o gráfico f(x)= x/ln(x)
..
Calcule a derivada da função que é da forma f(x) = g(x)/h(x). Procure alguma tabela de derivadas pra te ajudar. Pra achar pontos de máximo ou mínimo, iguale a derivada a 0:
..
f´(x) = (g´(x)*h(x) - g(x)*h´(x))/(h(x))^2 = 0
..
f´(x) = ((x´)*(ln(x)) - (x)*(ln´(x)))/ln^2(x) = 0
f´(x) = (1*ln(x) - x*(1/x))/ln^2(x) = 0
f´(x) = (ln(x) - 1)/ln^2(x) = 0
..
(ln(x) - 1)/ln^2(x) = 0
ln(x) - 1 = 0
ln(x) = 1
log(x) na base e = 1
x = e
..
Não sei se esse ponto é máximo ou mínimo.
-
Hel
- Novo Usuário

-
- Mensagens: 6
- Registrado em: Sex Jan 08, 2010 20:09
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática
- Andamento: cursando
por Hel » Sáb Jan 09, 2010 15:22
Alguém pode me ajudar a resolver o gráfico f(x)= x/ln(x)
1- onde ela é decrescente e crescente;
2- mínimo e o máximo da função;
3- assíntotas
4- onde côncava e convexa
f´(x) = (g´(x)*h(x) - g(x)*h´(x))/(h(x))^2 = 0
..
f´(x) = ((x´)*(ln(x)) - (x)*(ln´(x)))/ln^2(x) = 0
f´(x) = (1*ln(x) - x*(1/x))/ln^2(x) = 0
f´(x) = (ln(x) - 1)/ln^2(x) = 0
..
(ln(x) - 1)/ln^2(x) = 0
ln(x) - 1 = 0
ln(x) = 1
log(x) na base e = 1
x = e
-
Hel
- Novo Usuário

-
- Mensagens: 6
- Registrado em: Sex Jan 08, 2010 20:09
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática
- Andamento: cursando
por Molina » Sáb Jan 09, 2010 15:33
Boa tarde, Hel.
Por favor, respeite as regras. Crie um tópico novo para sua dúvida e não utilize um tópico de outra questão para postar a sua. Assim o fórum fica mais organizado e fica arquivado sua dúvida no local certo.
Qualquer dúvida me procure.
Faça bom uso so fórum! 
Diego Molina |
CV |
FB |
.COMEquipe AjudaMatemática.com"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
-

Molina
- Colaborador Moderador - Professor

-
- Mensagens: 1551
- Registrado em: Dom Jun 01, 2008 14:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - UFSC
- Andamento: formado
por Texorras » Dom Jan 10, 2010 15:09
ainda ng respondeu ao certo ..
-
Texorras
- Novo Usuário

-
- Mensagens: 5
- Registrado em: Sáb Jan 09, 2010 13:07
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Informatica
- Andamento: cursando
por Douglasm » Dom Abr 11, 2010 19:23
Olá Texorras. Sei que a questão já tem um tempo, mas postarei a solução mesmo assim. Para começar façamos como o D_Honda fez, e encontremos a equação:

Agora é só primitivarmos (por aqui chamamos "integral" ao invés de "primitiva", talvez isso tenha gerado uma confusão):

A fórmula usada (a da antiderivada) é:

Deste modo é só aplicarmos essa fórmula acima, em cada um dos membros:

Obs: Lembremos de adicionar a constante
C! Caso tenha dúvidas sobre o método usado, consulte o livro de cálculo ou pergunte aqui.
Até a próxima.
-

Douglasm
- Colaborador Voluntário

-
- Mensagens: 270
- Registrado em: Seg Fev 15, 2010 10:02
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Calculo de Primitiva
por Texorras » Sáb Jan 09, 2010 14:20
- 7 Respostas
- 3007 Exibições
- Última mensagem por Hel

Sáb Jan 09, 2010 15:47
Cálculo: Limites, Derivadas e Integrais
-
- primitiva
por rodrigonapoleao » Qua Jan 02, 2013 14:34
- 1 Respostas
- 1635 Exibições
- Última mensagem por young_jedi

Qua Jan 02, 2013 17:37
Cálculo: Limites, Derivadas e Integrais
-
- primitiva
por Ana Maria da Silva » Sáb Nov 23, 2013 13:37
- 1 Respostas
- 1476 Exibições
- Última mensagem por e8group

Sáb Nov 23, 2013 20:33
Cálculo: Limites, Derivadas e Integrais
-
- primitiva
por Ana Maria da Silva » Qui Nov 28, 2013 11:23
- 1 Respostas
- 1561 Exibições
- Última mensagem por Bravim

Sex Nov 29, 2013 00:14
Cálculo: Limites, Derivadas e Integrais
-
- primitiva
por bebelo32 » Sáb Mar 21, 2015 20:52
- 1 Respostas
- 2048 Exibições
- Última mensagem por adauto martins

Dom Mar 22, 2015 13:29
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.