• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Números complexos

Números complexos

Mensagempor andersontricordiano » Sex Mar 07, 2014 13:28

Seja Z = \frac{2-3i}{1+xi}. Determine X\in\mathbb{R}para que tenha

a)Re(z)=0
b)Im(z)=-2
c)Re(z)>Im(z)

Respostas:
a)x=\frac{2}{3}
b)x=\frac{1+\sqrt{3}}{2} ou x=\frac{1-\sqrt{3}}{2}
c)x<5

Agradeço quem resolver!
andersontricordiano
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 192
Registrado em: Sex Mar 04, 2011 23:02
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Números complexos

Mensagempor adauto martins » Ter Dez 30, 2014 15:10

z=2-3i/(1+xi)=(2-3i).(1-xi)/(1+{x}^{2})=(2-3x)/(1+{x}^{2})+3(x-3)i/(1+{x}^{2})\Rightarrow R(Z)=(2-3x)/(1+{x}^{2})...I(Z)=3(x-3)/(1+{x}^{2})
a)R(Z)=0\Rightarrow (2-3x)/(1+{x}^{2})=0\Rightarrow x=2/3
b)I(Z)=-2...analogo a a)
c)seria assim R(Z) \succ \left|I(Z) \right|,pois o corpo dos complexos nao e um corpo ordenado completo,entao nao se tem {z}_{1}\succ {z}_{2} e sim \left|{z}_{1} \right|\succ \left|{z}_{2} \right|,como R(Z) e um real,entao ficaria:
(2-3x)/(1+{x}^{2})\succ \left|3(x-3)/(1+{x}^{2}) \right|\Rightarrow 2-3x\succ \left|3(x-3) \right|,pois 1+{x}^{2}=\left|1+{x}^{2} \right|,p/qquer x\in \Re,agora e resolver(exercicio)
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Números Complexos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.