por danielcp » Sex Dez 26, 2014 17:46
Olá...
Eu estava estudando trigonometria quando surgiu a determinação geral, que é: para graus ? + 360º*k, k E Z e para radianos ? + 2?*k, k E Z.
Mas eu não consigo entender. Na verdade, eu entendo, porém não sei como aplicar e quero saber se é necessário decorá-la... Alguém poderia me dar um exemplo?
Estamos em período de férias, portanto é impossível ir ao plantão de dúvidas do colégio.
Obrigado.
-
danielcp
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Sex Dez 26, 2014 17:41
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por Russman » Sex Dez 26, 2014 23:19
O, assim chamado, ciclo trigonométrico se divide em

radianos que configura
uma volta completa. Ou seja, escolha um ponto qualquer sobre uma circunferência. Desloque este ponto sobre esta circunferência até retornar ao ponto original( isto sempre é possível). Desta forma, você terá compreendido o ângulo de

radianos. Porém, nada impede que você
continue deslocando este ponto. A partir dos

radianos você começa a contar até voltar novamente ao ponto original. Nesse caso terá andando
duas voltas completas que configuram

radianos. Portanto, dizemos que

e

são
arcos côngruos pois representam, a menos de um número inteiros de "voltas", o mesmo ponto da circunferência: o original.
O mesmo procede para dois ângulos quaisquer

e

tais que

, onde

é um inteiro e representa o "número de voltas" efetuadas.
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
Voltar para Trigonometria
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Determinação positiva de arcos côngruos
por Maria Livia » Sáb Out 13, 2012 08:30
- 3 Respostas
- 2908 Exibições
- Última mensagem por young_jedi

Sex Out 19, 2012 18:36
Trigonometria
-
- Arcos congruos
por Maria Livia » Sáb Out 13, 2012 08:22
- 1 Respostas
- 3731 Exibições
- Última mensagem por young_jedi

Sáb Out 13, 2012 11:36
Trigonometria
-
- [TRIGONOMETRIA expressão geral dos arcos]
por BELRODES00 » Seg Abr 09, 2012 21:03
- 0 Respostas
- 1479 Exibições
- Última mensagem por BELRODES00

Seg Abr 09, 2012 21:03
Trigonometria
-
- Determinação de divisores
por Abelardo » Seg Mar 07, 2011 00:50
- 4 Respostas
- 3130 Exibições
- Última mensagem por Abelardo

Seg Mar 07, 2011 20:14
Álgebra Elementar
-
- determinação de ponto
por wanderley argenton » Seg Mai 28, 2012 13:58
- 1 Respostas
- 3224 Exibições
- Última mensagem por LuizAquino

Seg Mai 28, 2012 17:42
Geometria Analítica
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.