por Cleyson007 » Sáb Jan 09, 2010 13:04
Olá, boa tarde!
Resolvi a questão abaixo, mas não encontrei o resultado do gabarito. Alguém pode me ajudar?
Se 12 recenseadores visitam 1440 famílias em 5 dias de trabalho de 8 horas por dia, quantas famílias serão visitadas por 5 recenseadores, em 6 dias, trabalhando 4 horas por dia?Montei a seguinte tabela:

Resolvendo:

Encontrei

.
O gabarito aponta
360 famílias como resposta correta.
Até mais.
-

Cleyson007
- Colaborador Voluntário

-
- Mensagens: 1228
- Registrado em: Qua Abr 30, 2008 00:08
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática UFJF
- Andamento: formado
por Molina » Sáb Jan 09, 2010 14:14
Boa tarde, Cleyson.
Realmente essas regras de 3 compostas confundem a mente.
Sua tabela é uma boa forma de começar o problema, mas vou fazer de uma forma diferente:
Pelo enunciado, 12 recenseadores visitam 1440 famílias em 5 dias de trabalho de 8 horas por dia. Ou seja,
12 recenseadores, trabalhando 40h (5d*8h), atendem 1440 família.Continunado o enunciado, temos que 5 recenseadores, em 6 dias, trabalhando 4 horas por dia, atendem x famílias. Ou seja,
5 recenseadores, trabalhando 24h (6d*4h), atendem x famílias.Agora esses dados que estão
sublinhados você vai colocar numa tabela. Note que diminuimos um dado, ficando apenas com o total de horas trabalhadas.

Diego Molina |
CV |
FB |
.COMEquipe AjudaMatemática.com"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
-

Molina
- Colaborador Moderador - Professor

-
- Mensagens: 1551
- Registrado em: Dom Jun 01, 2008 14:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - UFSC
- Andamento: formado
por Cleyson007 » Sáb Jan 09, 2010 17:18
Boa tarde Molina!
Realmente, por esse método é bem mais fácil e menos confuso!
Não havia pensado dessa forma..
Analisando sua resolução, constatei que reduziu a regra à três colunas. Pelo que pude perceber, ainda dava para reduzir mais ainda, não é?
Veja: 12 recenseadores estão trabalhando durante 40 horas. Logo, para 1 recenseador fazer todo o serviço precisaria trabalhar (
40*12)
480 hs.
Da mesma forma, 5 recenseadores estão trabalhando durante 24 horas. Logo, para 1 recenseador fazer todo o serviço precisaria trabalhar (
24*5)
120 hs.
Montando a regra de três, encontra-se o mesmo resultado:


Até mais.
-

Cleyson007
- Colaborador Voluntário

-
- Mensagens: 1228
- Registrado em: Qua Abr 30, 2008 00:08
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática UFJF
- Andamento: formado
por Molina » Sáb Jan 09, 2010 18:41
É isso mesmo, dava pra reduzir mais uma vez!

Diego Molina |
CV |
FB |
.COMEquipe AjudaMatemática.com"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
-

Molina
- Colaborador Moderador - Professor

-
- Mensagens: 1551
- Registrado em: Dom Jun 01, 2008 14:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - UFSC
- Andamento: formado
Voltar para Álgebra Elementar
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Quantas pernas tem?
por Neperiano » Dom Out 05, 2008 17:18
- 12 Respostas
- 17266 Exibições
- Última mensagem por Neperiano

Seg Mai 17, 2010 17:37
Desafios Difíceis
-
- Quantas moedas no cofre?
por roberto Marinho » Sex Out 16, 2009 04:38
- 3 Respostas
- 3731 Exibições
- Última mensagem por Molina

Seg Out 19, 2009 14:10
Sistemas de Equações
-
- Dormir quantas horas diariamente?
por MrJuniorFerr » Dom Nov 04, 2012 01:04
- 5 Respostas
- 6269 Exibições
- Última mensagem por Jhenrique

Qua Nov 07, 2012 18:26
Assuntos Gerais ou OFF-TOPIC
-
- Quantas são as possibilidades para o triângulo ABC?
por Ana Maria da Silva » Ter Jun 04, 2013 21:05
- 3 Respostas
- 2444 Exibições
- Última mensagem por DanielFerreira

Qua Jun 05, 2013 23:00
Probabilidade
-
- Análise combinatória. Quantas são as possibilidades?
por natomi » Qui Mar 20, 2014 15:24
- 1 Respostas
- 2483 Exibições
- Última mensagem por Pessoa Estranha

Sáb Mar 22, 2014 15:15
Análise Combinatória
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.