• Anúncio Global
    Respostas
    Exibições
    Última mensagem

integral indefinida

integral indefinida

Mensagempor fasaatyro » Seg Dez 01, 2014 21:56

\int\frac{(1+\sqrt[]{x}³}{\sqrt[]{x}}dxpor favor encontrei como resultado \frac{{(1+x)}^{4}}{2}+ C está correto????
fasaatyro
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Seg Dez 01, 2014 21:41
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura matematica
Andamento: cursando

Re: integral indefinida

Mensagempor adauto martins » Ter Dez 02, 2014 16:37

seria essa I= \int_{}^{}({1+\sqrt[]{x}})^{3}dx/(\sqrt[]{x}),se nao for,vamos nessa mesmo...
faz-se u=1+\sqrt[]{x}\Rightarrow du=(1/2).(1/\sqrt[]{x})dx,logo I=2.(\int_{}^{}{u}^{3}du)=2.{u}^{3+1}/(3+1)+c=(1/2)({1+\sqrt[]{x}})^{4}+c...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Funções
Autor: Emilia - Sex Dez 03, 2010 13:24

Preciso de ajuda no seguinte problema:
O governo de um Estado Brasileiro mudou a contribuição previdenciária de seus contribuintes. era de 6% sobre qualquer salário; passou para 11% sobre o que excede R$1.200,00 nos salários. Por exemplo, sobre uma salário de R$1.700,00, a contribuição anterior era: 0,06x R$1.700,00 = R$102,00; e a atual é: 0,11x(R$1.700,00 - R$1.200,00) = R$55,00.
i. Determine as funções que fornecem o valor das contribuições em função do valor x do salário antes e depois da mudança na forma de cobrança.
ii. Esboce seus gráficos.
iii. Determine os valores de salários para os quais:
- a contribuição diminuiu;
- a contribuição permaneceu a mesma;
- a contribuição aumentou.