Seja T: R²----->R³ uma transformação linear com a matriz:
T = 1 -1
0 1
-2 3
Para que B={e1,e2}, base canonica do R², e B'={ (1,0,1) , (-2,0,1) , (0,1,0)} base do R³. Qual a imagem do vetor (2,-3) pela T.
obrigado.


,pela transf.T(x,y) sob a matriz dada...aqui vc nao especificou a base a ser calculada,vou calcular segundo a transformaçao aplicada na matriz em questao e na base referente a matriz q. eh B...entao
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
![\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}} \frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}](/latexrender/pictures/981987c7bcdf9f8f498ca4605785636a.png)
(dica : igualar a expressão a
e elevar ao quadrado os dois lados)