por Raffz » Seg Nov 24, 2014 02:23
Bom, sou novo aqui no fórum e já começo com uma dúvida, sinto por imcomodar-vos.
Pois bem:
A questão pede para eu dizer se o vetor abaixo pertence a W = [(2,1,0,3), (3,-1,5,2), (-1,0,2,1)]
O vetor é v = (2,3,-7,3)
Eu fiz a relaçao v = aW1+bW2+W3 (onde Wn são os vetores de W, enfim, fiz a relação de combinação linear)
Dai obtive a matriz ampliada que escalonei e me deu a seguinte situação:
1 0 0 -12/5
0 1 0 -1
0 0 1 -1
0 0 0 0
Ai entra a dúvida:
Substituindo o que encontrei em a,b e c não dá o vetor v! Mas como isso se isso foi exatamente o que a matriz me desvendou?
Ou eu fiz tudo errado... Ou eu fiz tudo errado rs
Então agradeceria muito quem me ajudasse nessa questão.
Ps: Estou usando o fórum no celular, por curiosidade, é possível usar o sistema Latex para colocar as fórmulas bonitinhas pelo celular? Ou só na versão desktop?
Abs.
-
Raffz
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Seg Nov 24, 2014 02:09
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Química
- Andamento: cursando
por adauto martins » Seg Nov 24, 2014 13:47
se v e vetor de W, entao existem a,b,c reais tal q.

...
![(2,3,-7,3)=a(2,1,0,3)+b(3,-1,5,2)+c(-1,0,2,1)...[tex]\Rightarrow 2a+3b-c=2,a-b=3,5b+2c=-7,3a+2b+c=3... (2,3,-7,3)=a(2,1,0,3)+b(3,-1,5,2)+c(-1,0,2,1)...[tex]\Rightarrow 2a+3b-c=2,a-b=3,5b+2c=-7,3a+2b+c=3...](/latexrender/pictures/94a2085d4d392bfa25ac50f419bc620b.png)
sao as equaçoes,colocando-as em uma matriz completa ...
A=

,escalonandom,teremos
...

[tex]\begin{pmatrix}
a ultima linha da matriz deveria ser toda nula,pois temos tres incgnitas(a,b,c),sistema e incompativel,nao tem soluçao...e como tem-se 0=9/10,caimos em uma incoerencia,uma contradiçao...logo o vetor v,nao pode ser tomado como uma combinaçao linear dos vetores deW=[....]...logo o vetor v,nao pertence ao subespaço gerado pela base W...
ps-costumo errar em contas,pisso e bom refaze-las...
-
adauto martins
- Colaborador Voluntário

-
- Mensagens: 1171
- Registrado em: Sex Set 05, 2014 19:37
- Formação Escolar: EJA
- Área/Curso: matematica
- Andamento: cursando
por Raffz » Seg Nov 24, 2014 14:27
Agradeço pela ajuda. Agora compreendi o que aconteceu:
De início, permutei a L2 com a L1, isso é permitido porém é provável que isso tenh atrapalhado meus cálculos e errei em alguma besteira...
Fiz novamente o escalonamento, desta vez sem fazer essa permutação, e realmente, a última linha dá uma incoerência, o que mostra que o vetor não pertence a W.
Vlw!
-
Raffz
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Seg Nov 24, 2014 02:09
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Química
- Andamento: cursando
Voltar para Álgebra Linear
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Determinar um Vetor
por fernandosoares » Ter Abr 14, 2015 10:04
- 1 Respostas
- 2126 Exibições
- Última mensagem por DanielFerreira

Qua Abr 15, 2015 23:58
Geometria Analítica
-
- [Subespaço Vetorial] Subespaço envolvendo matrizes
por hyge » Qua Mai 02, 2018 17:04
- 2 Respostas
- 10805 Exibições
- Última mensagem por adauto martins

Dom Mai 06, 2018 12:28
Álgebra Linear
-
- [Subespaço Vetorial] Verificar que é o conjunto é subespaço
por anderson_wallace » Seg Dez 30, 2013 17:56
- 3 Respostas
- 4514 Exibições
- Última mensagem por Renato_RJ

Ter Dez 31, 2013 14:00
Álgebra Linear
-
- [retas que pertence ao plano]
por lucasdemirand » Dom Set 01, 2013 00:08
- 2 Respostas
- 1425 Exibições
- Última mensagem por lucasdemirand

Dom Set 01, 2013 12:41
Álgebra Linear
-
- [CURVAS] ângulo entre vetor tangente e vetor posição
por inkz » Ter Nov 20, 2012 01:24
- 5 Respostas
- 4693 Exibições
- Última mensagem por LuannLuna

Qui Nov 29, 2012 15:05
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.