• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Integral por substituição trigonométrica

Integral por substituição trigonométrica

Mensagempor Fernandobertolaccini » Seg Nov 03, 2014 17:36

Resolver:

\int_{}^{}\frac{\sqrt[]{x^2+1}}{x^2}

Resp: -\frac{\sqrt[]{1+x^2}}{x} + ln(\sqrt[]{1+x^2}+x) + C

Muito Obrigado !!!
Fernandobertolaccini
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 100
Registrado em: Qui Mai 01, 2014 10:27
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Licenciatura em Física
Andamento: cursando

Re: Integral por substituição trigonométrica

Mensagempor adauto martins » Qui Nov 06, 2014 15:16

faz-se x=tg\theta \Rightarrow dx=({sec\theta})^{2}d\theta...\int_{}^{}\sqrt[]{({tg\theta})^{2}+1})({sec\theta})^{2}d\theta/(({tg\theta})^{2})=\int_{}^{}(sec\theta)})({sec\theta})^{2}d\theta/({tg\theta})^{2}=\int_{}^{}({sec\theta}^{3})d\theta/{tg\theta}^{2}=\int_{}^{}(sec\theta)({cossec\theta})^{2}d\theta=;integrando por partes tal q. u=sec\theta\Rightarrow du=(sec\theta)(tg\theta)d\theta...dv={cossec\theta}^{2}\Rightarrow v=-(cotg\theta)...\int_{}^{}(sec\theta)({cossec\theta})^{2}d\theta=-(sec\theta)(cotg\theta)+\int_{}^{}(sec\theta)d\theta=......alguns algebrismo e refazendo as substituiçoes em x,chega-se ao resultado...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.