• Anúncio Global
    Respostas
    Exibições
    Última mensagem

dificudade com produto interno euclidiano

dificudade com produto interno euclidiano

Mensagempor nandooliver008 » Dom Nov 02, 2014 22:29

to em duvida na propriedade ||kv|| = |k| ||v|| na questão c)

a)encontre vetores em {R}^{2} de norma 1 cujo produto interno com vetor v= (3,-1) é zero.


b)mostre que existem infinitos vetores em {R}^{3} com norma 1 e cujo produto interno com vetor v= (1,-3,5) é zero.

c)sejá u=(4,1,2), v=(0,3,8), w=(3,1,2). obtenha as expressões.
||-2u|| + 2 ||u||

||3u-5v+w||

Na primeira tentei fazer ||(x,y)||=1 e 3x-1=0

Na c) meus resultados foram \sqrt[]{1414} e 4\sqrt[]{21}
nandooliver008
Usuário Ativo
Usuário Ativo
 
Mensagens: 21
Registrado em: Sáb Mai 17, 2014 23:40
Formação Escolar: GRADUAÇÃO
Área/Curso: c&t
Andamento: cursando

Re: dificudade com produto interno euclidiano

Mensagempor Russman » Seg Nov 03, 2014 02:43

Vetores em R^2 normalizados são da forma \frac{1}{\sqrt{a^2+b^2}}(a,b). Para que o PI seja nulo com o vetor (3,-1) é preciso que

\frac{1}{\sqrt{a^2+b^2}}3a-b=0

Ou seja, 3a=b. Portanto, os vetores de R^2 normalizados perpendiculares ao vetor (3,-1) são do tipo

\frac{1}{\sqrt{a^2 + 9a^2}}(a,3a) = \frac{1}{a\sqrt{10}}(a,3a) = \frac{1}{\sqrt{10}}(1,3)

Ou seja, na verdade a solução do problema é um único vetor.

Já para o caso do R^3 é diferente. Veja que o PI de \frac{1}{\sqrt{a^2+b^2+c^2}}(a,b,c) com (1,-3,5) nulo gera

a-3b+5c = 0

Ou seja, existem dois parâmetros livres a solução do problema. Logo, cada vetor \frac{1}{\sqrt{a^2+b^2+c^2}}(a,b,c) tal que a-3b+5c = 0 resolve o problema e existem infinitos trios a, b e c tais q isso ocorre.

Na c,

|-2u| + 2|u| = 2|u| + 2|u| = 4|u| = 4 \sqrt{4^2 + 1^2 + 2^2} = 4 \sqrt{21}

e

|3u-5v+w| =|(12-0+3 , 3-15+1 ,6-40+2 )| = |(15,-11,32)| = \sqrt{1370}

Se eu n errei nenhuma conta eu acredito q seja isso.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: dificudade com produto interno euclidiano

Mensagempor nandooliver008 » Seg Nov 03, 2014 09:02

vlw cara muito obrigado mesmo.
nandooliver008
Usuário Ativo
Usuário Ativo
 
Mensagens: 21
Registrado em: Sáb Mai 17, 2014 23:40
Formação Escolar: GRADUAÇÃO
Área/Curso: c&t
Andamento: cursando

Re: dificudade com produto interno euclidiano

Mensagempor nandooliver008 » Seg Nov 03, 2014 09:20

só mais uma duvida, pode me explicar porque em a-3b+5=0 existem 2 parâmetros? não entendi. vlw
nandooliver008
Usuário Ativo
Usuário Ativo
 
Mensagens: 21
Registrado em: Sáb Mai 17, 2014 23:40
Formação Escolar: GRADUAÇÃO
Área/Curso: c&t
Andamento: cursando

Re: dificudade com produto interno euclidiano

Mensagempor nandooliver008 » Seg Nov 03, 2014 09:37

Russman escreveu:Vetores em R^2 normalizados são da forma \frac{1}{\sqrt{a^2+b^2}}(a,b). Para que o PI seja nulo com o vetor (3,-1) é preciso que

\frac{1}{\sqrt{a^2+b^2}}3a-b=0

Ou seja, 3a=b. Portanto, os vetores de R^2 normalizados perpendiculares ao vetor (3,-1) são do tipo

\frac{1}{\sqrt{a^2 + 9a^2}}(a,3a) = \frac{1}{a\sqrt{10}}(a,3a) = \frac{1}{\sqrt{10}}(1,3)

Ou seja, na verdade a solução do problema é um único vetor.

Já para o caso do R^3 é diferente. Veja que o PI de \frac{1}{\sqrt{a^2+b^2+c^2}}(a,b,c) com (1,-3,5) nulo gera

a-3b+5c = 0

Ou seja, existem dois parâmetros livres a solução do problema. Logo, cada vetor \frac{1}{\sqrt{a^2+b^2+c^2}}(a,b,c) tal que a-3b+5c = 0 resolve o problema e existem infinitos trios a, b e c tais q isso ocorre.

Na c,

|-2u| + 2|u| = 2|u| + 2|u| = 4|u| = 4 \sqrt{4^2 + 1^2 + 2^2} = 4 \sqrt{21}

e

|3u-5v+w| =|(12-0+3 , 3-15+1 ,6-40+2 )| = |(15,-11,32)| = \sqrt{1370}

Se eu n errei nenhuma conta eu acredito q seja isso.







só mais uma duvida, pode me explicar porque em a-3b+5=0 existem 2 parâmetros? não entendi. vlw
nandooliver008
Usuário Ativo
Usuário Ativo
 
Mensagens: 21
Registrado em: Sáb Mai 17, 2014 23:40
Formação Escolar: GRADUAÇÃO
Área/Curso: c&t
Andamento: cursando

Re: dificudade com produto interno euclidiano

Mensagempor Russman » Seg Nov 03, 2014 14:46

Digamos que você escolha fixar o valor de a para, por exemplo, a=1. Então,

1-3b+5c=0

Ou seja, os valores de b e c ainda estão "amarrados" de modo que, para capturar um único vetor da forma prevista é preciso escolher duas coordenadas e calcular a terceira.

Entende?
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Álgebra Linear

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59