• Anúncio Global
    Respostas
    Exibições
    Última mensagem

pucpr probabilidade

pucpr probabilidade

Mensagempor Maria Livia » Sáb Out 25, 2014 17:40

Um agricultor adquiriu 60 sementes de milho para fazer o plantio, com a garantia de que a probabilidade de germinação é de 0,8 (independente das outras). Ao utilizar a plantadeira manual, não percebeu que havia uma semente utilizada na safra anterior com probabilidade de germinação 0,5 e esta se misturou as novas sementes. Assim, o agricultor plantou as 61 sementes e destas, 60 germinaram. Dado que a probabilidade de 1 semente germinar (velha ou nova) é de 97/122, qual é a probabilidade de que a semente que nao germinou tenha sido uma das sementes novas? R: 24/25
nao entendi essa questao, fiquei perdida no meio de tantas probabilidades. Alguem pode me explicar? obrigada!
Maria Livia
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 79
Registrado em: Seg Ago 13, 2012 13:03
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: pucpr probabilidade

Mensagempor EARIBEIRO » Ter Out 28, 2014 15:33

[pucpr probabilidade] Para responder a sua pergunta devemos analisar o seguinte:

Dentre as 60 sementes novas (chamarei de SN), 0,8, ou seja, 80% germinarão. Logo, chegamos a conclusão que se 80% germinarão, então 20% do total de 60 sementes NÃO GERMINARÃO. Sendo assim, podemos afirmar que 20% de 60 sementes correspondem a 12 sementes. Isso nos mostra que pode acontecer de 12 sementes NÃO germinarem. Como o exercício quer saber qual a probabilidade da única semente que não germinou ser uma das novas, ou seja, estar entre as 60 SN, então fazemos a probabilidade de que seja escolhida uma dessas sementes no valor total, ficando assim (12/61) - do total de sessenta e uma sementes doze podem ser novas e não germinarem-.

Como o exercício estipulou que 97/122 é probabilidade de QUALQUER semente germinar, chegaremos a conclusão(Se tivéssemos 122 semente, 97 iriam germinar e, consequentemente, 25 não) que 25 sementes dessas 122 não iria crescer, logo a probabilidade de uma semente qualquer não germinar é 25/122.

Por fim, 25/122 é o valor total para qualquer valor de semente (que não irá crescer). Para sabermos a probabilidade das condições propostas pelo exercício, devemos levar em conta que esse valor (25/122) é a probabilidade máxima, sendo nessas condições, qual seria a probabilidade de que (12/61) das sementes novas e que não germinaria, correspondessem ao valor total para qualquer semente? Isso nos levará ao famoso "barrigão, barriguinha" ficando 12/61 dividindo 25/122

12/61
______ =
25/122

12 x 122
________ simplificando 122/61 chegaremos...
25 x 61

12 x 2
_____ --------------->24/25
25 x 1


Espero ter ajudado! Ficarei feliz se compartilhasse o link do meu livro " A Visão do Cego" ( http://migre.me/mxgcr) em seu Facebook!
EARIBEIRO
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Ter Out 28, 2014 14:53
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Probabilidade

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59