• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Integral

Integral

Mensagempor jcmatematica » Qui Set 25, 2014 22:52

Estou estudando integral, tentando aprender sozinho, com o auxilio dos "craques" do fórum e com dedicação.

Em uma integral, sabemos que a sintaxe é a seguinte
\int_{}^{}2{x}^{2} + x + dx

Minha dúvida é a seguinte:
Por que aparece o dx?

Qual o significado dele?


Desde já, muito obrigado pela ajuda.
jcmatematica
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 46
Registrado em: Ter Jul 29, 2014 23:36
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em matematica
Andamento: formado

Re: Integral

Mensagempor adauto martins » Dom Out 12, 2014 20:08

dx,e o diferencial infinitesimal,e a diferencial da variavel,no caso x,ao qual se deriva ou integra...df(x)/dx(derivada de f(x) em relaçao a variavel x,
\int_{a}^{b}f(x)dx,integral de f(x) em relaçao a variavel x,no intervalo[a,b]...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: Integral

Mensagempor jcmatematica » Seg Out 13, 2014 00:17

Boa noite.

Ah, entendi.

Obrigado.
jcmatematica
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 46
Registrado em: Ter Jul 29, 2014 23:36
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em matematica
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}