por fff » Sáb Set 27, 2014 18:31
Seja f diferenciável. Que condições devem satisfazer a, f(a) e f'(a) para garantir que a reta tangente ao gráfico no ponto (a,f(a)):
a) não interseta os semi-eixos positivos.
b)interseta apenas um semi-eixo negativo
c)não interseta o eixo dos xx
d)não interseta o eixo dos yy
-

fff
- Colaborador Voluntário

-
- Mensagens: 103
- Registrado em: Sáb Dez 21, 2013 11:30
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Informática
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- DERIVADAS PARCIAIS e continuidade - função é diferenciável?
por inkz » Seg Nov 26, 2012 20:37
- 3 Respostas
- 6010 Exibições
- Última mensagem por MarceloFantini

Ter Nov 27, 2012 00:01
Cálculo: Limites, Derivadas e Integrais
-
- Funcão diferenciável
por Cleyson007 » Ter Jun 12, 2012 15:47
- 2 Respostas
- 2163 Exibições
- Última mensagem por joaofonseca

Ter Jun 12, 2012 19:22
Cálculo: Limites, Derivadas e Integrais
-
- [Diferenciabilidade] função diferenciável
por -civil- » Qui Set 29, 2011 14:50
- 1 Respostas
- 1560 Exibições
- Última mensagem por LuizAquino

Sex Set 30, 2011 16:47
Cálculo: Limites, Derivadas e Integrais
-
- Demonstração continuidade de uma função diferenciável
por Beatriz4 » Sáb Abr 28, 2012 20:58
- 1 Respostas
- 1657 Exibições
- Última mensagem por fraol

Ter Mai 01, 2012 01:40
Cálculo: Limites, Derivadas e Integrais
-
- [Continuidade, Derivada Parcial e Função Diferenciável]
por raimundoocjr » Qui Out 24, 2013 17:28
- 0 Respostas
- 1174 Exibições
- Última mensagem por raimundoocjr

Qui Out 24, 2013 17:28
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
cálculo de limites
Autor:
Hansegon - Seg Ago 25, 2008 11:29
Bom dia.
Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado
\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]
Assunto:
cálculo de limites
Autor:
Molina - Seg Ago 25, 2008 13:25
Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.
Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo.
Caso ainda não tenha dado uma

, avisa que eu resolvo.
Bom estudo!
Assunto:
cálculo de limites
Autor:
Guill - Dom Abr 08, 2012 16:03

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.