• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Cálculo Diferencial e Integral I] Derivada

[Cálculo Diferencial e Integral I] Derivada

Mensagempor Pessoa Estranha » Qui Set 25, 2014 13:03

Olá!

Preciso de ajuda para resolver o seguinte exercício:

"Obter a equação da reta tangente à curva y = \frac{{e}^{x} + {e}^{-x}}{2} em x = -2".

Minha resolução:

\frac{dy}{dx} = \frac{{e}^{x}(1-2{x}^{-2})}{4}

(y-{y}_{o}) = \frac{dy}{d{x}_{o}}(x-{x}_{o})

(y-{y}_{o}) = \frac{dy}{d{x}_{o}}(x-{x}_{o}) \rightarrow (y-f({x}_{o})) = \frac{{e}^{-2}(1-2{(-2)}^{-2})}{4}.(x - (-2)) \rightarrow (y - \frac{{e}^{-2} + {e}^{2}}{2}) = \frac{{e}^{-2}.(1-\frac{1}{2})}{4}.(x+2)

y = \frac{{e}^{-2}}{8}.(x+2) + \frac{{e}^{-2}+{e}^{2}}{2} \rightarrow y = \frac{{e}^{-2}(x+6) + 4{e}^{2}}{8}

Resposta do Livro:

y = \frac{({e}^{-2}-{e}^{2})x}{2} + \frac{3{e}^{-2}-{e}^{2}}{2}

Tentei fazer algumas manipulações algébricas para tentar chegar numa equivalência das expressões, mas não deu certo.

Por favor, podem me ajudar?

Muito Obrigada!
Pessoa Estranha
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 262
Registrado em: Ter Jul 16, 2013 16:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: [Cálculo Diferencial e Integral I] Derivada

Mensagempor DanielFerreira » Qui Set 25, 2014 21:57

Derivemos,

\\ y = \frac{e^x + e^{- x}}{2} \\\\\\ y = \frac{e^x + \frac{1}{e^x}}{2} \\\\\\ y' = \frac{\left( e^x + \frac{0 \cdot e^x - 1 \cdot e^x}{(e^x)^2} \right) \cdot 2 - \left( e^x + \frac{1}{e^x} \right) \cdot 0}{4} \\\\\\ y' = \frac{2 \cdot \left( e^x - \frac{1}{e^x} \right)}{4} \\\\\\ \boxed{y' = \frac{e^x - e^{- x}}{2}}


Sabemos que a equação da reta tangente... no ponto (p, f(p)) é dada por f(x) = f'(x) \cdot (x - p) + f(p)

\\ f'(x) = \lim_{x \rightarrow p} \frac{f(x) - f(p)}{x - p} \\\\\\ f(x) = f'(x) \cdot (x - p) + f(p) \\\\\\ f(x) = \left( \frac{e^2 - e^{- 2}}{2} \right) \cdot \left( x - 2 \right) + \frac{e^2 + e^{- 2}}{2} \\\\\\ f(x) = \left( \frac{e^2 - e^{- 2}}{2} \right) \cdot x + \left( \frac{e^2 - e^{- 2}}{2} \right) \cdot (- 2) + \frac{e^2 + e^{- 2}}{2} \\\\\\ f(x) = \left( \frac{e^2 - e^{- 2}}{2} \right) \cdot x + \left( \frac{-2e^2 + 2e^{- 2}}{2} \right) + \frac{e^2 + e^{- 2}}{2} \\\\\\ \boxed{\boxed{f(x) = \frac{(e^2 - e^{- 2})x}{2} + \frac{3e^{- 2} - e^2}{2}}}
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: [Cálculo Diferencial e Integral I] Derivada

Mensagempor Pessoa Estranha » Sex Set 26, 2014 10:47

Olá! Muito Obrigada! Errei em alguma coisa na hora de derivar. Vou ver direitinho agora. Muito obrigada mesmo! :-D
Pessoa Estranha
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 262
Registrado em: Ter Jul 16, 2013 16:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: