Estudando a teoria de Operações, entendi que um composto
pode satisfazer as propriedades associativa, comutativa, distributiva, ter elemento neutro, apresentar um conjunto de elementos simetrizáveis e um conjunto de elementos regulares. O problema é que, quando estava resolvendo um exercício que pedia para verificar se a operação admitia associativa, comutativa, elemento neutro, elemento simetrizável e elemento regular, só consegui mostrar que era associativa e comutativa. Pensando na parte de elemento neutro, fiquei na dúvida, apesar de que acho que é algo simples
. Podem, por favor, me ajudar? A operação é:
Como faço para verificar que tem existe um elemento neutro para esta operação neste conjunto E?
Muito Obrigada!!

.Ou seja,
é t.q.
.
definida sobre E é associativa, comutativa, se admite elemento neutro e, neste caso, calcule os elementos simetrizáveis. calcule também os elementos regulares."
e que
. Logo
são os simétricos dos
, uma vez que
. Logo, o conjunto dos simetrizáveis para esta operação em E é dado por
.
. Além disso, observemos que os elementos regulares são da forma
, uma vez que 
, onde
. Logo,
é o conjunto dos elementos regulares de E na operação em questão.![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio. ![{0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20} {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}](/latexrender/pictures/c0100c6f4d8bdbb7d54165e6be7aff04.png)
da seguinte forma:
.
da seguinte forma:
.