• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Problema de análise combinatória.

Problema de análise combinatória.

Mensagempor Sobreira » Seg Set 15, 2014 01:03

Pessoal estava um tempo sem ver o conteúdo de análise combinatória e tenho uma dúvida neste problema:
No lançamento de dois dados, calcule a probabilidade de obter a soma 5.
O principio fundamental da contagem diz que o total de possibilidades é igual à multiplicação das possibilidade de cada evento independente.
Então para o espaço amostral no primeiro dado eu tenho 6 possibilidades vezes 6 possibilidades do segundo dado eu tenho 36 possibilidades. Agora para o evento eu sei q o certo é 4 possibilidades, mas pensando sobre o PFC agora...No primeiro dado eu tenho 4 possibilidades (1,2,3 e 4) e para o segundo também tenho quatro (1,2,3 e 4), o que seria na multiplicação então 16, mas eu sei que o evento é 4. O que está errado nesta minha idéia ?
"The good thing about science is that it's true whether or not you believe in it."
Sobreira
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 122
Registrado em: Sex Out 12, 2012 17:33
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: formado

Re: Problema de análise combinatória.

Mensagempor DanielFerreira » Dom Set 21, 2014 14:12

Olá Sobreira,
boa tarde!

Determinemos o espaço amostral, e, teu raciocínio estás correto quanto a quantidade...

Ao lançarmos dois dados, temos as seguintes possibilidades:

\Omega = \begin{cases} (1, 1), (1,2), (1, 3),...\\ (2, 1), (2, 2),...\\ (3, 1), (3, 2),... \\  (4, 1), (4, 2),... \\ (5, 1), (5, 2),... \\ (6, 1), (6, 2),... \end{cases}

Ou seja, um total de 36.

Sendo que, com soma 5 tem-se: {(1, 4), (2, 3), (3, 2), (4, 1)}.

Daí, a probabilidade de obter soma 5 é \boxed{\frac{4}{36}}. Isto é, \frac{1}{9}.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Análise Combinatória

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}