• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Para que valor de x está definida a função?

Para que valor de x está definida a função?

Mensagempor Fontelles » Ter Dez 29, 2009 10:04

Para que valores de x está definida a função?
f(x) = \frac{\sqrt[]{sen2x - 2}}{\sqrt[]{cos2x + 3cosx - 1}}

Rapaz, acho que pra resolver isso tem que achar um termo em comum, mas nem isso eu tô conseguindo fazer.
Tentei de outra forma, considerando que sen2x-2 será sempre < 0, independente do valor de x, então para definir a equação o divisor deveria ser < 0 também, mas não cheguei em uma resposta satisfatória com o gabarito.
Ajuda ae, pessoal!
Fontelles
Usuário Ativo
Usuário Ativo
 
Mensagens: 17
Registrado em: Qua Dez 09, 2009 01:23
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Para que valor de x está definida a função?

Mensagempor Marcampucio » Ter Dez 29, 2009 15:51

O radicando do numerador tem de ser maior ou igual a zero

sen2x-2\geq0

sen2x\geq2

-1\leq sen2x\leq +1 \rightarrow  \sqrt{sen2x-2}\,\,\cancel{\in} R a equação não tem solução Real.
A revelação não acontece ao encontrar o sábio no alto da montanha. A revelação vem com a subida da montanha.
Marcampucio
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 180
Registrado em: Ter Mar 10, 2009 17:48
Localização: São Paulo
Formação Escolar: GRADUAÇÃO
Área/Curso: geologia
Andamento: formado

Re: Para que valor de x está definida a função?

Mensagempor Fontelles » Ter Dez 29, 2009 19:04

Pior que não é essa a resposta, cara.
Acho que como o numerador vai sempre dar negativo, o divisor também tem de ser negativo para a raíz poder existir.
Fontelles
Usuário Ativo
Usuário Ativo
 
Mensagens: 17
Registrado em: Qua Dez 09, 2009 01:23
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Para que valor de x está definida a função?

Mensagempor Marcampucio » Ter Dez 29, 2009 19:33

Fontelles escreveu:Para que valores de x está definida a função?
f(x) = \frac{\sqrt[]{sen2x - 2}}{\sqrt[]{cos2x + 3cosx - 1}}

Rapaz, acho que pra resolver isso tem que achar um termo em comum, mas nem isso eu tô conseguindo fazer.
Tentei de outra forma, considerando que sen2x-2 será sempre < 0, independente do valor de x, então para definir a equação o divisor deveria ser < 0 também, mas não cheguei em uma resposta satisfatória com o gabarito.
Ajuda ae, pessoal!


só prá conferir:

a coisa é f(x) = \frac{\sqrt[]{sen2x - 2}}{\sqrt[]{cos2x + 3cosx - 1}} ou é f(x) = \frac{\sqrt[]{sen^2x - 2}}{\sqrt[]{cos^2x + 3cosx - 1}}

na primeira forma não tem jeito mesmo, o numeradorr não é Real.
A revelação não acontece ao encontrar o sábio no alto da montanha. A revelação vem com a subida da montanha.
Marcampucio
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 180
Registrado em: Ter Mar 10, 2009 17:48
Localização: São Paulo
Formação Escolar: GRADUAÇÃO
Área/Curso: geologia
Andamento: formado

Re: Para que valor de x está definida a função?

Mensagempor rvitorper » Qui Mar 17, 2011 16:25

Vi em um livro a seguinte forma para f(x):
f(x) = \sqrt[2]{\frac{sen 2x - 2}{cos 2x + 3cos x - 1}}
Dessa maneira é fácil resolver. Dado que o antecedente é menor que 0, o consequente deve ser menor que 0 também para que f(x) tenha domínio real:
cos2x + 3cosx -1 < 0
O que nos dá:
-1 \leq cos x < \frac{1}{2}
Por fim:
D = \left[ x \epsilon \Re / \frac{\pi}{3} < x < \frac{5\pi}{3} \right]
rvitorper
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qui Mar 17, 2011 16:02
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Para que valor de x está definida a função?

Mensagempor Elcioschin » Qui Mar 17, 2011 17:49

Fontelles

Quando você postar uma questão e souber a resposta, por favor POSTE-A também.
Isto facilita a vida de quem pretende ajudá-lo.

O caminho do rvitorper (de colocar tudo dentro de um mesmo radical) é o caminho correto.
Vou apenas detalhá-lo um pouco mais:

1) O numerador (sen2x - 2) é sempre negativo
2) Para se ter uma radicando POSITIVO o denominador deverá ser NEGATIVO, isto é:

cos2x + 3cosx - 1 < 0

(2*cos²x - 1) + 3cosx - 1 < 0

2cos²x + 3cosx - 2 < 0 ----> O primeiro membro é uma parábola vom a concavidade voltada para cima (a = 2)

Para esta função ser NEGATIVA cosx deve estar situada entre as raízes

Discriminante ----> D = b² - 4ac ---> D = 3² - 4*2*(-2) ---> D = 25 ----> V(D) = 5

Raízes: cosx = - 2 e cosx = 1/2

Acontece que -1 < cos x < + 1


Solução - 1 < cos x < 1/2 ----> pi/3 < x < 5pi/3 ---> Exatamente a solução do rvitorper
Elcioschin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 624
Registrado em: Sáb Ago 01, 2009 10:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?