por Fontelles » Ter Dez 29, 2009 10:04
Para que valores de x está definida a função?
![f(x) = \frac{\sqrt[]{sen2x - 2}}{\sqrt[]{cos2x + 3cosx - 1}} f(x) = \frac{\sqrt[]{sen2x - 2}}{\sqrt[]{cos2x + 3cosx - 1}}](/latexrender/pictures/a1c32887b97686edf4ab7882c9defb5e.png)
Rapaz, acho que pra resolver isso tem que achar um termo em comum, mas nem isso eu tô conseguindo fazer.
Tentei de outra forma, considerando que sen2x-2 será sempre < 0, independente do valor de x, então para definir a equação o divisor deveria ser < 0 também, mas não cheguei em uma resposta satisfatória com o gabarito.
Ajuda ae, pessoal!
-
Fontelles
- Usuário Ativo

-
- Mensagens: 17
- Registrado em: Qua Dez 09, 2009 01:23
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por Marcampucio » Ter Dez 29, 2009 15:51
O radicando do numerador tem de ser maior ou igual a zero



a equação não tem solução Real.
A revelação não acontece ao encontrar o sábio no alto da montanha. A revelação vem com a subida da montanha.
-
Marcampucio
- Colaborador Voluntário

-
- Mensagens: 180
- Registrado em: Ter Mar 10, 2009 17:48
- Localização: São Paulo
- Formação Escolar: GRADUAÇÃO
- Área/Curso: geologia
- Andamento: formado
por Fontelles » Ter Dez 29, 2009 19:04
Pior que não é essa a resposta, cara.
Acho que como o numerador vai sempre dar negativo, o divisor também tem de ser negativo para a raíz poder existir.
-
Fontelles
- Usuário Ativo

-
- Mensagens: 17
- Registrado em: Qua Dez 09, 2009 01:23
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por Marcampucio » Ter Dez 29, 2009 19:33
Fontelles escreveu:Para que valores de x está definida a função?
![f(x) = \frac{\sqrt[]{sen2x - 2}}{\sqrt[]{cos2x + 3cosx - 1}} f(x) = \frac{\sqrt[]{sen2x - 2}}{\sqrt[]{cos2x + 3cosx - 1}}](/latexrender/pictures/a1c32887b97686edf4ab7882c9defb5e.png)
Rapaz, acho que pra resolver isso tem que achar um termo em comum, mas nem isso eu tô conseguindo fazer.
Tentei de outra forma, considerando que sen2x-2 será sempre < 0, independente do valor de x, então para definir a equação o divisor deveria ser < 0 também, mas não cheguei em uma resposta satisfatória com o gabarito.
Ajuda ae, pessoal!
só prá conferir:
a coisa é
![f(x) = \frac{\sqrt[]{sen2x - 2}}{\sqrt[]{cos2x + 3cosx - 1}} f(x) = \frac{\sqrt[]{sen2x - 2}}{\sqrt[]{cos2x + 3cosx - 1}}](/latexrender/pictures/a1c32887b97686edf4ab7882c9defb5e.png)
ou é
![f(x) = \frac{\sqrt[]{sen^2x - 2}}{\sqrt[]{cos^2x + 3cosx - 1}} f(x) = \frac{\sqrt[]{sen^2x - 2}}{\sqrt[]{cos^2x + 3cosx - 1}}](/latexrender/pictures/81e1b063f9dc0024a5b3e74005512b91.png)
na primeira forma não tem jeito mesmo, o numeradorr não é Real.
A revelação não acontece ao encontrar o sábio no alto da montanha. A revelação vem com a subida da montanha.
-
Marcampucio
- Colaborador Voluntário

-
- Mensagens: 180
- Registrado em: Ter Mar 10, 2009 17:48
- Localização: São Paulo
- Formação Escolar: GRADUAÇÃO
- Área/Curso: geologia
- Andamento: formado
por rvitorper » Qui Mar 17, 2011 16:25
Vi em um livro a seguinte forma para f(x):
![f(x) = \sqrt[2]{\frac{sen 2x - 2}{cos 2x + 3cos x - 1}} f(x) = \sqrt[2]{\frac{sen 2x - 2}{cos 2x + 3cos x - 1}}](/latexrender/pictures/a8ddeb7d11e727ec39cbfafb9124502d.png)
Dessa maneira é fácil resolver. Dado que o antecedente é menor que 0, o consequente deve ser menor que 0 também para que f(x) tenha domínio real:

O que nos dá:

Por fim:
![D = \left[ x \epsilon \Re / \frac{\pi}{3} < x < \frac{5\pi}{3} \right] D = \left[ x \epsilon \Re / \frac{\pi}{3} < x < \frac{5\pi}{3} \right]](/latexrender/pictures/81c4ad625409c8efcb9fa3455fbaef5c.png)
-
rvitorper
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Qui Mar 17, 2011 16:02
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por Elcioschin » Qui Mar 17, 2011 17:49
Fontelles
Quando você postar uma questão e souber a resposta, por favor POSTE-A também.
Isto facilita a vida de quem pretende ajudá-lo.
O caminho do rvitorper (de colocar tudo dentro de um mesmo radical) é o caminho correto.
Vou apenas detalhá-lo um pouco mais:
1) O numerador (sen2x - 2) é sempre negativo
2) Para se ter uma radicando POSITIVO o denominador deverá ser NEGATIVO, isto é:
cos2x + 3cosx - 1 < 0
(2*cos²x - 1) + 3cosx - 1 < 0
2cos²x + 3cosx - 2 < 0 ----> O primeiro membro é uma parábola vom a concavidade voltada para cima (a = 2)
Para esta função ser NEGATIVA cosx deve estar situada entre as raízes
Discriminante ----> D = b² - 4ac ---> D = 3² - 4*2*(-2) ---> D = 25 ----> V(D) = 5
Raízes: cosx = - 2 e cosx = 1/2
Acontece que -1 < cos x < + 1
Solução - 1 < cos x < 1/2 ----> pi/3 < x < 5pi/3 ---> Exatamente a solução do rvitorper
-
Elcioschin
- Colaborador Voluntário

-
- Mensagens: 624
- Registrado em: Sáb Ago 01, 2009 10:49
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia
- Andamento: formado
Voltar para Trigonometria
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Determine o valor de L para que a função
por Ana Maria da Silva » Qui Mai 09, 2013 12:11
- 0 Respostas
- 1128 Exibições
- Última mensagem por Ana Maria da Silva

Qui Mai 09, 2013 12:11
Cálculo: Limites, Derivadas e Integrais
-
- Determine o valor de k para que a função seja contínua...
por igorsantana2005 » Sex Abr 12, 2013 17:30
- 1 Respostas
- 8384 Exibições
- Última mensagem por e8group

Sex Abr 12, 2013 19:37
Cálculo: Limites, Derivadas e Integrais
-
- [Integral Definida] Está certa minha resolução?
por Fabio Wanderley » Seg Out 22, 2012 23:37
- 2 Respostas
- 1901 Exibições
- Última mensagem por Fabio Wanderley

Ter Out 23, 2012 00:45
Cálculo: Limites, Derivadas e Integrais
-
- [descobrir valor para domínio] Domínio da função
por Zebra-LNX » Sáb Jun 16, 2012 12:26
- 1 Respostas
- 3121 Exibições
- Última mensagem por MarceloFantini

Ter Jun 19, 2012 22:18
Funções
-
- Ajuda para resolver Integral definida
por rodolphogagno » Qua Dez 01, 2010 15:16
- 4 Respostas
- 3391 Exibições
- Última mensagem por Moura

Seg Dez 13, 2010 21:51
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.