• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Teorema de Green - Circulação e Fluxo de uma Elipse

Teorema de Green - Circulação e Fluxo de uma Elipse

Mensagempor Victor Mello » Qua Set 10, 2014 20:39

Boa noite,

O meu problema aqui foi encontrar o fluxo do campo dado por F = xi + yj ao redor de uma elipse dada por r(t) = (cost)i + (4sent)j, cujo intervalo de t varia de [0,2\pi].

Na verdade o meu problema é que a minha resposta não está de acordo com o gabarito, já havia tentado passo a passo a achar os semi-eixos dessa elipse, até provei a área de uma elipse que é \pi ab utilizando mesmo o próprio Teorema de Green. Então, usei a função paramétrica e eliminei o parâmetro para achar a equação cartesiana dessa elipse parametrizada, que deu \frac{y^2}{16} + x^2 = 1, cujo semi-eixo maior é 4 e semi-eixo menor é 1. Então, o fluxo que eu achei foi 4\pi, mas o gabarito deu 8\pi. Então, o que pode ter errado nessa questão? Se alguém puder esclarecer, eu agradeço.

Grato.
Victor Mello
Usuário Ativo
Usuário Ativo
 
Mensagens: 23
Registrado em: Dom Nov 03, 2013 17:29
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da computação.
Andamento: cursando

Re: Teorema de Green - Circulação e Fluxo de uma Elipse

Mensagempor young_jedi » Qui Set 11, 2014 09:42

Pelos meus calculos essa integral da 0 teria como você demonstrar os seus cálculo e dar uma conferida no enunciado ?
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Teorema de Green - Circulação e Fluxo de uma Elipse

Mensagempor Victor Mello » Qui Set 11, 2014 13:18

A resposta do gabarito é o seguinte:

A circulação é 0, mas o fluxo é 8\pi. Eu fiz o seguinte: Primeiro eu converti as equações paramétricas para equação cartesiana eliminando o parâmetro:

x(t)=cost
y(t)=4sent

isolando o t, deu:

cost =x
sent = \frac{y}{4}

aí, utilizando a identidade trigonométrica, a equação de uma elipse seria de:

\frac{y^2}{16} + x^2 = 1, é uma elipse "em pé", pois o semi-eixo maior está acompanhando com o y. Logo, a=4 e b=1


A questão é encontrar a circulação e o fluxo do campo dado por F = xi+yj ao redor e através da elipse que eu citei no post. Já que eu consegui transformar a equação parametrizada numa equação normal, já dá para fazer integral.

Eu considerei a integral de circulação, do tipo \int Mdx + Ndy. Só que no caso da elipse, a soma das derivadas tem que dar 1, aí o que eu fiz: Eu chamei N de X e M também X, pois se eu considerar como uma integral dupla, o somatório das derivadas realmente dá 1. Só que eu não quis deixar na forma de integral dupla para não dar muito trabalho na hora dos cálculos, mas a ideia minha é chamar M e N de x.

O meu cálculo ficou assim:

\int_{0}^{2\pi} xdx + \int_{0}^{2\pi}xdy Convertendo tudo para coordenadas polares, ficou assim:

\int_{0}^{2\pi} -16sen\theta cos\theta d\theta + \int_{0}^{2\pi}4cos^2\theta d\theta = -16\int_{0}^{2\pi}sen\theta cos\theta d\theta + 2 \int_{0}^{2\pi}[1+cos(2\theta)] d\theta = -16\int_{0}^{2\pi} udu + 2\left(\int_{0}^{2\pi} d\theta + \int_{0}^{2\pi}cos(2\theta) d\theta \right) = -8sen^2\theta + 2\theta + sen(2\theta) = 4\pi.

Agora o que não entendi é o porquê de dar zero, eu achei 4\pi. Não sei se não era pra considerar a área da elipse, ou era apenas substituir no campo vetorial, infelizmente não consegui encontrar solução correta.
Victor Mello
Usuário Ativo
Usuário Ativo
 
Mensagens: 23
Registrado em: Dom Nov 03, 2013 17:29
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da computação.
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Proporcionalidade
Autor: silvia fillet - Qui Out 13, 2011 22:46

Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.


Assunto: Proporcionalidade
Autor: silvia fillet - Sáb Out 15, 2011 10:25

POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?

P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50

P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25


P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833


4/6 =10/15 =14/21 RAZÃO = 2/3

SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA


Assunto: Proporcionalidade
Autor: ivanfx - Dom Out 16, 2011 00:37

utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.


Assunto: Proporcionalidade
Autor: Marcos Roberto - Dom Out 16, 2011 18:24

Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.

Você conseguiu achar o dia em que caiu 15 de novembro de 1889?


Assunto: Proporcionalidade
Autor: deiasp - Dom Out 16, 2011 23:45

Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 06:23

Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 07:18

Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 07:40

Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias

44242:7 = 6320 + resto 2

è assim, nâo sei mais sair disso.


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 10:24

que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta


Assunto: Proporcionalidade
Autor: Kiwamen2903 - Seg Out 17, 2011 19:43

Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:


De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.

De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.

De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.

Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.