• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Derivadas] Derivadas com definição de limites

[Derivadas] Derivadas com definição de limites

Mensagempor concurseironf » Sex Set 05, 2014 18:11

Não entendi muito bem como utilizar esta definição dentro destas funções.

Alguém pode me ajudar a me dar uma luz por favor?
Anexos
6 - Derivadas.jpg
concurseironf
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qui Ago 21, 2014 12:21
Formação Escolar: GRADUAÇÃO
Área/Curso: Informática
Andamento: cursando

Re: [Derivadas] Derivadas com definição de limites

Mensagempor DanielFerreira » Dom Set 07, 2014 22:18

Olá concurseironf,
seja bem-vindo!

Para encontrar a derivada de uma função pela definição (dada), basta substituir... Veja:

a)

Temos que f(x) = \frac{1}{x - 2}, então f(x + h) = \frac{1}{(x + h - 2)}.

Segue que,

\\ f'(x) = \lim_{h \rightarrow 0} \frac{f(x + h) - f(x)}{h} \\\\\\ f'(x) = \lim_{h \rightarrow 0} \frac{\frac{1}{x + h - 2} - \frac{1}{x - 2}}{h} \\\\\\ f'(x) = \lim_{h \rightarrow 0} \frac{\frac{1 \cdot (x - 2) - 1 \cdot (x + h - 2)}{(x + h - 2)(x - 2)}}{h} \\\\\\ f'(x) = \lim_{h \rightarrow 0} \frac{x - 2 - x - h + 2}{(x + h - 2)(x - 2)} \times \frac{1}{h} \\\\\\ f'(x) = \lim_{h \rightarrow 0} \frac{\cancel{x} - \cancel{2} - \cancel{x} - h + \cancel{2}}{h(x + h - 2)(x - 2)} \\\\\\ f'(x) = \lim_{h \rightarrow 0} \frac{- h}{h(x + h - 2)(x - 2)} \\\\\\ f'(x) = \lim_{h \rightarrow 0} \frac{- \cancel{h}}{\cancel{h}(x + h - 2)(x - 2)} \\\\\\ f'(x) = \lim_{h \rightarrow 0} \frac{- 1}{(x + h - 2)(x - 2)} \\\\\\ f'(x) = \frac{- 1}{(x + 0 - 2)(x - 2)} \\\\\\ \boxed{f'(x) = \frac{- 1}{(x - 2)^2}}
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}