• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Polinômio

Polinômio

Mensagempor SandraRB » Dom Ago 31, 2014 16:53

Não consigo concluir esse exercício:
Se o polinômio x3+kx2-2x+3 é divisível pelo polinômio x2-x+1, qual é o quociente?

Já tentei pelo método da chave, mas ao verificar o resto não é coerente com as respostas propostas...
SandraRB
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Sex Ago 01, 2014 18:17
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Polinômio

Mensagempor e8group » Seg Set 01, 2014 00:28

Outra forma :

Lemma 1. Dois polinômios são iguais se, e somente , se seus coeficientes forem ordenadamente iguais .

Exemplo : Sejam p(x) = x^{201} + 9x + 6 e q(x) = x^{201} + x + 6 Temos 9 \neq 1 , logo p \neq q ..

Lemma 2 . Se p e q são polinômios de graus n e m , respectivamente , então pq é um polinômio de grau n+m

Exemplo (x- 1)(x+1) = x^2 -1 .

Fixado n,m em \mathbb{N} ,definamos p(x):= \sum_{k=0}^{m} \alpha_k x^k e q(x):= \sum_{l=0}^{n} \beta_k x^k com \alpha_m \cdot \beta_n \neq 0 .

Segue que (pq)(x) = p(x) \cdot q(x) =  \sum_{k=0}^{m} \alpha_k x^k \cdot \sum_{l=0}^{n} \beta_k x^k =  \sum_{k=0}^m \sum_{l=0}^{n}   \alpha_k \cdot \beta_l x^{l+k } , como o maior valor que l+k assume é m+n o resultado segue .

Lemma 3 . A respeito de dois polinômios p e m , dizer que m divide p , é o suficiente mostrar que existe algum polinômio q tal que p = mq .

Estamos pronto para o exercício .

Tome p(x) = x^3 + kx^2 - 2x + 3 e m(x) =x^2- x + 1 .

Pelo lemma 3 , podemos escrever x^3 + kx^2 - 2x + 3 =  (x^2- x + 1)q(x) . Como o polinômio no 1° membro e de grau 3 , pelo lemma 2 concluímos que o polinômio q é de grau 1 , i.e, q(x) = ax + b (a,b a serem determinados )

Segue que

(x^2- x + 1)q(x) =  (x^2- x + 1)(ax+b) = ax^3 +(b-a)x^2 + (a-b)x + b . Assim , pelo Lemma 1 , temos que

1 = a , k= b-a, -2 = a-b e 3 = b e portanto q(x) = x + 3 .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?