• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Equação da reta

Equação da reta

Mensagempor YuriFreire » Ter Ago 19, 2014 23:27

Boa noite,
Gostaria de compreender a seguinte questão em anexo.
Como posso encontrar a equação para uma reta vertical que passa pelo ponto y = 4/3 se uma reta vertical não tem como achar coeficiente angular? Essa reta sendo vertical com x = -1 não é a equação x = -1? Ou seja para todo y, x = -1.
Anexos
Retas.png
YuriFreire
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Sex Ago 08, 2014 00:30
Formação Escolar: GRADUAÇÃO
Área/Curso: Medicina/Licenciatura em Matemática
Andamento: cursando

Re: Equação da reta

Mensagempor YuriFreire » Sáb Ago 23, 2014 22:07

Alguém??

Ainda to precisando de ajuda. Sei que é questão besta.


Grato,

Yuri Freire
YuriFreire
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Sex Ago 08, 2014 00:30
Formação Escolar: GRADUAÇÃO
Área/Curso: Medicina/Licenciatura em Matemática
Andamento: cursando

Re: Equação da reta

Mensagempor DanielFerreira » Sáb Ago 23, 2014 22:25

Olá Yuri,
boa noite!

A equação da reta é dada por y = ax + b. Ora, marquemos o ponto (- 1, 4/3) no plano cartesiana e prolonguemos a vertical; como podes notar, a equação da reta também passará pelo ponto (- 1, 0).

Resta-nos encontrar a equação...

\begin{vmatrix} x & y & 1 \\ - 1 & \frac{4}{3} & 1 \\ - 1 & 0 & 1 \end{vmatrix} = 0 \\\\\\ \begin{bmatrix} x & y & 1 & | & x & y \\ - 1 & \frac{4}{3} & 1 & | & - 1 & \frac{4}{3} \\ - 1 & 0 & 1 & | & - 1 & 0 \end{bmatrix} = 0 \\\\ \frac{4x}{3} - y + 0 + \frac{4}{3} + 0 + y = 0 \\\\ \frac{4x}{3} = - \frac{4}{3} \\\\ \boxed{x = - 1}
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: Equação da reta

Mensagempor YuriFreire » Seg Set 01, 2014 22:42

Obrigado meu caro!

Aprendi a fazer!!
YuriFreire
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Sex Ago 08, 2014 00:30
Formação Escolar: GRADUAÇÃO
Área/Curso: Medicina/Licenciatura em Matemática
Andamento: cursando

Re: Equação da reta

Mensagempor DanielFerreira » Dom Set 07, 2014 21:23

Que bom! Até a próxima.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}