• Anúncio Global
    Respostas
    Exibições
    Última mensagem

função inversa

função inversa

Mensagempor SandraRB » Sex Ago 01, 2014 18:34

Obtenha a lei de formação da função inversa de f:[2,\infty]--> [-4;\infty definida por f(x)=x^2 -4x

Já inicie fazendo a troca de x por y

x=y^2 -4y
x=y(y-4)

Mas como isolar y??
SandraRB
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Sex Ago 01, 2014 18:17
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: função inversa

Mensagempor Russman » Sáb Ago 02, 2014 16:16

Você obteve uma equação de 2° grau para y.

x = y^2 - 4y
y^2 - 4y - x=0

Agora tome a=1, b=-4, c=-x e aplique a fórmula de Bhaskara.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}