• Anúncio Global
    Respostas
    Exibições
    Última mensagem

exercicios geometria analitica

exercicios geometria analitica

Mensagempor gidelson araujo » Qua Jul 23, 2014 01:15

alguem pode me ajudar nestas questoes

Retas perpendiculares
1) Determine K para que as reta (r) x – 2py + 7 = 0 seja perpendicular a reta (s) -2px – y +1 = 0
2) Determine a equação da reta s que passa pelo ponto P é perpendicular a reta r, nos seguintes casos:
a) P(4, 3) e (r) 2x – 3y + 1 = 0
b) P(-2, 1) e (r) x – y + 4 = 0
c) P(0, 3 ) e (r) 2x + y -3 = 0
d) P(1, -1) e (r) x/3 + y/5 = 1

2 Determine o valor de p para que o ângulo RST seja de 45 graus, sabendo que R(2, 3), S(9, 4) e T(5, p)

4) determine a equação da reta r que passa pelo ponto P e é paralela a reta s que passa pelos pontos A e B:
a) P(1,4), A(2, 1) e b(0, -3) b) P(-1, 3), A(-3,2) e B(-1,-1) c) P(0, 0), A(2, 1) e B(4, 2)

Equação Geral da reta
1) Dada a reta r de equação 2x – y + 3 = 0 e os pontos A(-1, 1), B(0, 3), D(1, -3) e E(-3, 4), verifique quais desse pontos pertencem a reta r.
2)determine a área do triangulo definido pela origem e pelas intersecções da reta (r) 2x + 3y -6 = 0 com os eixos OX e OY.


se alguem puder ajudar em alguma dessasa equaçoes agradeço
gidelson araujo
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qua Jul 23, 2014 00:59
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.