• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Integral]Integral Indefinida

[Integral]Integral Indefinida

Mensagempor Bravim » Sáb Jul 19, 2014 02:34

Olá álguem saberia resolver este integral:
f(t)=\int (1-cost)^\frac{5}{2} dt
Eu tentei fazer primeiro:1-cost=sin^2w e sin(t) dt= sin(2w)dw, mas não conseguir arranjar o seno para substituir.
Obrigado,
Haroldo
Imagem
Avatar do usuário
Bravim
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 57
Registrado em: Qui Out 03, 2013 03:28
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: [Integral]Integral Indefinida

Mensagempor e8group » Sáb Jul 19, 2014 11:15

Vamos tentar ...


cos(t) = cos( \frac{t}{2} + \frac{t}{2}) = cos^2(\frac{t}{2}) - sin^2(\frac{t}{2}) = 1 - 2sin^2(\frac{t}{2}) . Logo

(1-cos(t))^{5/2} = 2^{5/2} |sin^5(\frac{t}{2})| = 2^{5/2} sign(sin^5(\frac{t}{2})) \cdot sin^5(\frac{t}{2}) . Assim ,

\int (1-cos(t))^{5/2} dt = 2^{5/2} sign(sin^5(\frac{t}{2})) \int sin^5(\frac{t}{2}) dt .

Tente concluir .



OBS'.: sign é a função sinal , definida por sign(\zeta) = \begin{cases} 1 ; \zeta > 0 \\ 0 ; \zeta = 0 \\ -1  ; \zeta < 0 \end{cases} .

OBS'' .: Nota-se que |x| = sign(x) \cdot x .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes

 



Assunto: função demanda
Autor: ssousa3 - Dom Abr 03, 2011 20:55

alguém poderia me ajudar nesse exercício aqui Uma loja de CDs adquire cada unidade por R$20,00 e a revende por R$30,00. Nestas condições,
a quantidade mensal que consegue vender é 500 unidades. O proprietário estima que, reduzindo o preço para R$28,00, conseguirá vender 600 unidades por mês.
a) Obtenha a função demanda, supondo ser linear

Eu faço ensino médio mas compro apostilas de concursos para me preparar para mercado de trabalho e estudar sozinho não é fácil. Se alguém puder me ajudar aqui fico grato


Assunto: função demanda
Autor: ssousa3 - Seg Abr 04, 2011 14:30

Gente alguém por favor me ensine a calcular a fórmula da função demanda *-)