• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Integral

Integral

Mensagempor Fernandobertolaccini » Sex Jul 18, 2014 01:06

Se f'(x)={cos}^{2}x-sen2x e f(\frac{\pi}{4}) = \frac{1}{4}, encontre f(x)


Resp: \frac{x}{2}+\frac{sen2x}{2}+\frac{cos2x}{2}-\frac{\pi}{8}


Muito obrigadoo !!
Fernandobertolaccini
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 100
Registrado em: Qui Mai 01, 2014 10:27
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Licenciatura em Física
Andamento: cursando

Re: Integral

Mensagempor DanielFerreira » Sáb Jul 19, 2014 22:28

Temos que f(x) = \int f'(x), então:

\\ f(x) = \int f'(x) \\\\ f(x) = \int \cos^2 x - \sin (2x) dx \\\\\\ f(x) = \frac{x}{2} + \frac{\sin (2x)}{4} + \frac{\cos (2x)}{2} + c \\\\\\ f\left(\frac{\pi}{4}\right) = \frac{\frac{\pi}{4}}{2} + \frac{\sin \left(2 \cdot \frac{\pi}{4} \right)}{4} + \frac{\cos \left(2 \cdot \frac{\pi}{4} \right)}{2} + c \\\\\\ \frac{1}{4} = \frac{\pi}{8} + \frac{\sin \left(\frac{\pi}{2} \right)}{4} + \frac{\cos \left(\frac{\pi}{2} \right)}{2} + c \\\\\\ \cancel{\frac{1}{4}} = \frac{\pi}{8} + \cancel{\frac{1}{4}} + \frac{0}{2} + c \\\\ c = - \frac{\pi}{8}


Por fim, \boxed{f(x) = \frac{x}{2} + \frac{\sin (2x)}{4} + \frac{\cos (2x)}{2} - \frac{\pi}{8}}
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Funções
Autor: Emilia - Sex Dez 03, 2010 13:24

Preciso de ajuda no seguinte problema:
O governo de um Estado Brasileiro mudou a contribuição previdenciária de seus contribuintes. era de 6% sobre qualquer salário; passou para 11% sobre o que excede R$1.200,00 nos salários. Por exemplo, sobre uma salário de R$1.700,00, a contribuição anterior era: 0,06x R$1.700,00 = R$102,00; e a atual é: 0,11x(R$1.700,00 - R$1.200,00) = R$55,00.
i. Determine as funções que fornecem o valor das contribuições em função do valor x do salário antes e depois da mudança na forma de cobrança.
ii. Esboce seus gráficos.
iii. Determine os valores de salários para os quais:
- a contribuição diminuiu;
- a contribuição permaneceu a mesma;
- a contribuição aumentou.