• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Função Seno

Função Seno

Mensagempor thamires thais » Qui Jul 17, 2014 16:06

Estou com dificuldades para resolver esse questão. Se poderem me ajudar, ficarei grata.
Questão foto1
Anexos
1405620184821.jpg
Ajudeeem
thamires thais
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Qui Jul 17, 2014 15:54
Formação Escolar: ENSINO MÉDIO
Área/Curso: arquitetura
Andamento: cursando

Re: Função Seno

Mensagempor Russman » Qui Jul 17, 2014 22:25

Bom, me parece um problema de maximização. Você busca o maior ângulo que a função f(t) pode assumir. Este problema é resolvido calculando para qual t que a derivada de f(t) com relação a t se anula. Portanto,

\frac{\mathrm{d} }{\mathrm{d} t}f(t)=0 \Rightarrow \frac{\pi }{9}\frac{8 \pi }{3} \cos \left [ \frac{8 \pi}{3}\left (t-\frac{3}{4}  \right ) \right ]=0

e, de onde,

\cos \left [ \frac{8 \pi}{3}\left (t-\frac{3}{4}  \right ) \right ]=0  \Rightarrow \frac{8 \pi}{3} \left (t-\frac{3}{4}  \right ) = \left ( k+\frac{1}{2} \right ) \pi \Rightarrow t=\frac{3}{8}\left ( k+\frac{5}{2})

com k \in \mathbb{Z}.

Estamos interessados em tempo positivos. Então, para qual k inteiro que temos o menor tempo positivo? Esta pergunta é pertinente pois sendo a função seno periódica o ângulo máximo será atingido várias vezes e queremos saber a primeira vez que é atingido. Assim,

t>0 \Rightarrow  \frac{3}{8}\left ( k+\frac{5}{2} \right )>0 \Rightarrow k>-\frac{5}{2} \Rightarrow k>-2

e, daí, a primeira vez que o ângulo máximo é atingido é em

t= \frac{3}{8}\left ( -2+\frac{5}{2} \right ) = \frac{3}{16}.

Finalmente,

f\left ( \frac{3}{16} \right ) = \frac{ \pi}{9} \sin \left [ \frac{8 \pi}{3}\left ( \frac{3}{16} - \frac{3}{4} \right ) \right ] = \frac{\pi}{9} \sin \left [ -\frac{8 \pi}{3} \frac{9}{16}\right ] = \frac{\pi}{9}

Este angulo equivale a 20 ^{\circ}.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Função Seno

Mensagempor thamires thais » Qui Jul 17, 2014 22:34

Russman escreveu:Bom, me parece um problema de maximização. Você busca o maior ângulo que a função f(t) pode assumir. Este problema é resolvido calculando para qual t que a derivada de f(t) com relação a t se anula. Portanto,

\frac{\mathrm{d} }{\mathrm{d} t}f(t)=0 \Rightarrow \frac{\pi }{9}\frac{8 \pi }{3} \cos \left [ \frac{8 \pi}{3}\left (t-\frac{3}{4}  \right ) \right ]=0

e, de onde,

\cos \left [ \frac{8 \pi}{3}\left (t-\frac{3}{4}  \right ) \right ]=0  \Rightarrow \frac{8 \pi}{3} \left (t-\frac{3}{4}  \right ) = \left ( k+\frac{1}{2} \right ) \pi \Rightarrow t=\frac{3}{8}\left ( k+\frac{5}{2})

com k \in \mathbb{Z}.

Estamos interessados em tempo positivos. Então, para qual k inteiro que temos o menor tempo positivo? Esta pergunta é pertinente pois sendo a função seno periódica o ângulo máximo será atingido várias vezes e queremos saber a primeira vez que é atingido. Assim,

t>0 \Rightarrow  \frac{3}{8}\left ( k+\frac{5}{2} \right )>0 \Rightarrow k>-\frac{5}{2} \Rightarrow k>-2

e, daí, a primeira vez que o ângulo máximo é atingido é em

t= \frac{3}{8}\left ( -2+\frac{5}{2} \right ) = \frac{3}{16}.

Finalmente,

f\left ( \frac{3}{16} \right ) = \frac{ \pi}{9} \sin \left [ \frac{8 \pi}{3}\left ( \frac{3}{16} - \frac{3}{4} \right ) \right ] = \frac{\pi}{9} \sin \left [ -\frac{8 \pi}{3} \frac{9}{16}\right ] = \frac{\pi}{9}

Este angulo equivale a 20 ^{\circ}.
thamires thais
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Qui Jul 17, 2014 15:54
Formação Escolar: ENSINO MÉDIO
Área/Curso: arquitetura
Andamento: cursando


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59