por Janoca » Dom Jul 13, 2014 03:54
Seja p(x) uma função contínua tal que

. Podemos concluir que:
a)

, para todo x e [2, 4]
b)

, para todo x e
![]-\infty, +\infty[ ]-\infty, +\infty[](/latexrender/pictures/cc1790792ccfdf750f3dd0a1e77c869c.png)
c)

, para algum x e [2, 4]
d)

, para algum x e [2, 4]
e)

para todo x e [2,4].
Creio que essa questão seja relativamente simples, mas confesso que surgiu uma dúvida, primeiro quando olhei essa questão de cara, pensei q a resposta fosse a letra c ou e. Porém, to em duvida de ir logo respondendo de cara. Gostaria de entender o modo como devo resolver essa questão, gostaria de entender o que ha de errado em cada alternativa e o motivo da alternativa correta.
desde já agradeço!
-
Janoca
- Usuário Dedicado

-
- Mensagens: 30
- Registrado em: Sex Jun 06, 2014 16:47
- Formação Escolar: GRADUAÇÃO
- Área/Curso: matemática
- Andamento: cursando
por e8group » Dom Jul 13, 2014 13:14
(a) é Falso . Pois , a integral nos fornece área com sinal e podemos ter

e

de modo que a soma das integrais vale 7 ,i.e, estamos dizemos que p não necessariamente é

em
![[2,4] [2,4]](/latexrender/pictures/a157b852663a42e907fc1ae4884ff3e4.png)
. Deixo para vc fornecer um contra exemplo .
(b) é Falso . Segue diretamente de (a) .
(d) é falso , segue diretamente de (a) .Ou alternativamente , se tivéssemos

em
![[2,4] [2,4]](/latexrender/pictures/a157b852663a42e907fc1ae4884ff3e4.png)
teríamos pela monotonicidade da integral que

, absurdo !
(e) é falso .Segue diretamente de (a) .
O único item que sobrou é o (c) que de fato é verdadeiro .Pois , se o item (c) fosse falso teríamos que

para todo x em
![[2,4] [2,4]](/latexrender/pictures/a157b852663a42e907fc1ae4884ff3e4.png)
o que implicaria pela monotonicidade da integral que

,absurdo ! .
Portanto , negar

implica em dizer que para algum x em [2,4] tem-se

.
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por Janoca » Dom Jul 13, 2014 21:14
obrigada pela ajuda!

-
Janoca
- Usuário Dedicado

-
- Mensagens: 30
- Registrado em: Sex Jun 06, 2014 16:47
- Formação Escolar: GRADUAÇÃO
- Área/Curso: matemática
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Integral] Estou com dificuldade para resolver esta integral
por Paulo Perez » Qui Out 03, 2013 12:22
- 2 Respostas
- 4134 Exibições
- Última mensagem por Paulo Perez

Sex Out 04, 2013 16:32
Cálculo: Limites, Derivadas e Integrais
-
- [INTEGRAL] Integral por partes! Alguem pode me ajudar?
por mih123 » Qua Jan 16, 2013 20:18
- 3 Respostas
- 4428 Exibições
- Última mensagem por adauto martins

Qua Out 22, 2014 09:11
Cálculo: Limites, Derivadas e Integrais
-
- [Integral] Resolver Integral definida com trigonometria
por rodrigoboreli » Dom Set 07, 2014 01:02
- 1 Respostas
- 4213 Exibições
- Última mensagem por adauto martins

Sex Out 17, 2014 12:39
Cálculo: Limites, Derivadas e Integrais
-
- [Integral] Integral funçao trigonometrica
por ewald » Qua Ago 17, 2011 22:33
- 2 Respostas
- 2704 Exibições
- Última mensagem por ewald

Qui Ago 18, 2011 00:54
Cálculo: Limites, Derivadas e Integrais
-
- [Integral] Integral funçao trigonometrica
por ewald » Sáb Ago 20, 2011 17:20
- 2 Respostas
- 2722 Exibições
- Última mensagem por LuizAquino

Dom Ago 21, 2011 21:14
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
Funções
Autor:
Emilia - Sex Dez 03, 2010 13:24
Preciso de ajuda no seguinte problema:
O governo de um Estado Brasileiro mudou a contribuição previdenciária de seus contribuintes. era de 6% sobre qualquer salário; passou para 11% sobre o que excede R$1.200,00 nos salários. Por exemplo, sobre uma salário de R$1.700,00, a contribuição anterior era: 0,06x R$1.700,00 = R$102,00; e a atual é: 0,11x(R$1.700,00 - R$1.200,00) = R$55,00.
i. Determine as funções que fornecem o valor das contribuições em função do valor x do salário antes e depois da mudança na forma de cobrança.
ii. Esboce seus gráficos.
iii. Determine os valores de salários para os quais:
- a contribuição diminuiu;
- a contribuição permaneceu a mesma;
- a contribuição aumentou.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.