• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limites

Limites

Mensagempor cortesfsa » Sex Dez 18, 2009 22:30

Dúvida: usando a definição de limites, se formos demonstrar que \lim_{x\to 1}(3x+2)=5, podemos proceder da seguinte forma:

Devemos mostrar que
\forall \varepsilon > 0,\exists \delta > 0\mid 0< |x-1|<\delta \Longrightarrow |(3x+2)-5|<\varepsilon
Nota-se que
|(3x+2)-5|<\varepsilon \Leftrightarrow |x-1|<\frac{\varepsilon }{3}
Assim, se escolhermos \delta =\frac{\varepsilon }{3}, teremos
\forall \varepsilon > 0,\exists \delta=\frac{\varepsilon }{3} > 0\mid 0< |x-1|<\delta \Longrightarrow |(3x+2)-5|<\varepsilon
De fato, se
0<|x-1|< \delta=\frac{\varepsilon }{3}\Rightarrow 3|x-1|<\varepsilon \Rightarrow |(3x+2)-5|<\varepsilon

Agora, como faço para demonstrar, usando a definição, que \lim_{x\to 1}(3x+2)=6 é falso?
Bronze OBQ Norte/Nordeste
---
"Try not. Do, or do not. There is no try." --Yoda
"Computer, compute to the last digit the value of pi" --Spock
"I have a bad feeling about this..." --Obi-Wan
cortesfsa
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Sex Dez 18, 2009 22:28
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: Limites

Mensagempor Molina » Sáb Dez 19, 2009 15:15

Boa tarde.

Note que suponde que o resultado desse limite seja 6 você não conseguirá chegar que |x-1|<k \varepsilon. Com isso não conseguirá escolher um \delta e dar continuidade a demonstração.

Acredito que esse critério já é suficiente para mostrar que o limite não é 6.

Abraços, :y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Limites

Mensagempor cortesfsa » Sáb Dez 19, 2009 19:22

Olá molina,
Ainda não me dei por satisfeito :-D

E se eu proseguir da seguinte forma:
\[\LARGE\\ |(3x+2)-6|<\varepsilon \\ |3x-4|<\varepsilon \\ -\varepsilon <3x-4<\varepsilon  \\ \frac{4-\varepsilon }{3}<x<\frac{4+\varepsilon }{3} \\ \frac{1-\varepsilon }{3}<x-1<\frac{1+\varepsilon }{3}\]
Isso significa que se \delta estiver dentro desse intervalo a condição estará satisfeita? Eu sei que, pelo conceito de limite isso é absurdo, mas eu só estou tentando entender a definição.

Outra dúvida: como chegar em |x-1|<k\varepsilon demonstrando \lim_{x\to 1}x^2=1?


Agradeço a atenção :y:
Bronze OBQ Norte/Nordeste
---
"Try not. Do, or do not. There is no try." --Yoda
"Computer, compute to the last digit the value of pi" --Spock
"I have a bad feeling about this..." --Obi-Wan
cortesfsa
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Sex Dez 18, 2009 22:28
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: Limites

Mensagempor Molina » Sáb Dez 19, 2009 19:54

cortesfsa escreveu:Outra dúvida: como chegar em |x-1|<k\varepsilon demonstrando \lim_{x\to 1}x^2=1?


Vamos lá:

|x^2-1|<\varepsilon \Leftrightarrow |(x-1)(x+1)|<\varepsilon

Mas, |x-1|<|(x-1)(x+1)|<\varepsilon \Rightarrow |x-1|<\varepsilon

:y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}