por anner » Sex Jul 04, 2014 00:14
Boa noite, pessoal. Tô com uma certa dificuldade numa derivada aqui, já quebrei a cabeça aqui e não consigo chegar a resposta do gabarito.
a questão é a seguinte:
![f(x)=[sen(x)]^{[2x^x-x+3]} f(x)=[sen(x)]^{[2x^x-x+3]}](/latexrender/pictures/c203a533d1249fa3a0bd9482a780bfc4.png)
comecei levando em consideração, primeiramente, a derivação de

tendo como v=
![[2x^x-x+3] [2x^x-x+3]](/latexrender/pictures/fd3b4e310353318714e0a6def73e93be.png)
, e posteriormente a de "v". Entretanto, o problema, acredito, esta realmente na derivação de

. Pois o expoente da expressão, no gabarito, está bem diferente o meu.
Eis a resposta que encontrei e a do gabarito, respectivamente:
![(2x^x-x+3){[sen(x)]^{[2x^x-x+2]}}cos(x)+{[sen(x)]^{[2x^x-x+3]}}ln[sen(x)](2x^x)[1+ln(x)]-{[sen(x)]^{[2x^x-x+3]}}ln(sen(x)) (2x^x-x+3){[sen(x)]^{[2x^x-x+2]}}cos(x)+{[sen(x)]^{[2x^x-x+3]}}ln[sen(x)](2x^x)[1+ln(x)]-{[sen(x)]^{[2x^x-x+3]}}ln(sen(x))](/latexrender/pictures/9dd6a1e33c1b82de7ba2309faddc6e34.png)
e
![{[sen(x)]^{[2x^x-x+3]}}{[2x^x]-x+3}cotg(x)+ln[sen(x)][2x^x(ln(x)+1)-1]} {[sen(x)]^{[2x^x-x+3]}}{[2x^x]-x+3}cotg(x)+ln[sen(x)][2x^x(ln(x)+1)-1]}](/latexrender/pictures/b10b5610012742c7f7da39e0e5c6d7fa.png)
Alguém poderia me ajudar? Mto Obrigada

-
anner
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Qui Jul 03, 2014 23:24
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Civil
- Andamento: cursando
por e8group » Sex Jul 04, 2014 01:17
Como derivar expressões da forma

?
A dica é escrever

na base

, para tal, note que

( Aqui usamos que epx composta com ln dá a aplicação identidade e vice-versa ) .
Utilizando propriedades de logaritmo , segue-se que

.
Observe que estamos avaliando

em

.Agora é possível derivar

pois conhecemos a derivada de

e temos a regra da cadeia e produto .
Aplicando a regra da cadeia e regra do produto obterá
Ou se preferir
Recomendo que tente fazer o exercício seguindo o mesmo raciocínio .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por Daniela[ » Sáb Jul 05, 2014 14:40
Boa Tarde!
Estou com dúvida em duas resoluções de problemas envolvendo taxas relacionadas, gostaria de um auxílio!
1- O ar está sendo bombeado para dentro de um balão esférico á taxa de 4,5 polegadas cúbicas por minuto. Ache a taxa de variação do raio quando este é de 2 polegadas. Lembrando que o volume da esfera é dado por V= 4pir³/3.
2- Uma pedra cai livremente em um lago parado. Ondas circulares se espalham e o raio da região afetada aumenta a uma taxa de 16cm/s. Qual a taxa de variação da área em relação ao tempo, quando o raio da região for de 4cm? (A=pir²)
NO AGUARDO!
OBRIGADA
-
Daniela[
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Sáb Jul 05, 2014 14:29
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia quimica
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Derivada] Regra da cadeia
por gabriel feron » Seg Out 01, 2012 23:08
- 1 Respostas
- 1507 Exibições
- Última mensagem por young_jedi

Seg Out 01, 2012 23:16
Cálculo: Limites, Derivadas e Integrais
-
- [DERIVADA] regra da cadeia
por tatianaCAL » Sáb Jun 22, 2013 09:47
- 1 Respostas
- 1404 Exibições
- Última mensagem por young_jedi

Sáb Jun 22, 2013 11:33
Cálculo: Limites, Derivadas e Integrais
-
- [Derivada]regra da cadeia
por principiante » Dom Fev 04, 2018 10:28
- 1 Respostas
- 4913 Exibições
- Última mensagem por Baltuilhe

Dom Fev 04, 2018 21:02
Cálculo: Limites, Derivadas e Integrais
-
- Derivada pela regra da cadeia
por Priscila_moraes » Ter Dez 06, 2011 12:48
- 3 Respostas
- 2177 Exibições
- Última mensagem por MarceloFantini

Ter Dez 06, 2011 15:38
Cálculo: Limites, Derivadas e Integrais
-
- Cálculo de derivada - Regra da cadeia
por Sobreira » Dom Dez 02, 2012 13:23
- 1 Respostas
- 2345 Exibições
- Última mensagem por DanielFerreira

Dom Dez 02, 2012 18:05
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.