• Anúncio Global
    Respostas
    Exibições
    Última mensagem

limite

limite

Mensagempor Janoca » Ter Jun 24, 2014 17:48

calcule o \lim_{t\rightarrow+\infty}{e}^{-t}.sent[/tex]?

essa é uma questão que pede velocidade e aceleração, as quais eu ja calculei, o problema é o limite. creio que \lim_{t\rightarrow+\infty}{e}^{-t} é zero, mas nao tenho certeza. nao consigo entender como seria o limite de sent
Janoca
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 30
Registrado em: Sex Jun 06, 2014 16:47
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática
Andamento: cursando

Re: limite

Mensagempor e8group » Ter Jun 24, 2014 18:35

Considere o limite lim_{x\to a}  f(x)g(x) .Suponha que g limitada (i.e , \exists m > 0 ; |g(x)| \leq m  ,  \forall x \in Dom(g) ) e além disso lim_{x\to a}  f(x) = 0 então

lim_{x\to a}  f(x)g(x) = 0 .

Deixo a justificação p/ vc .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: limite

Mensagempor Janoca » Ter Jun 24, 2014 18:39

Beleza, eu imaginei que fosse isso, porque analisando a questão imaginei que sent = g(X) fosse limitada.
Janoca
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 30
Registrado em: Sex Jun 06, 2014 16:47
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}