por G-Schmitt-Jr » Sex Mai 30, 2014 12:19
Alguém poderia me ajudar a entender como resolver esse limite:
f(x) = (3+2*x)^5/(2*x^4-x^3-2*x-5)
O limite quando x tende a -infinito.
Muito obrigado!!!
-
G-Schmitt-Jr
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Sex Mai 30, 2014 11:56
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia
- Andamento: cursando
por Janoca » Seg Jun 16, 2014 02:35
Caro G-Schimitt-JR,
Sempre que vc for resolver limites com divisões de polinômios que tendem no infinito, observe o seguinte:
1º Caso, se houver uma divisão de polinômio que tende para mais ou menos infinito, e tiver o maior grau em cima (ou seja, no numerador) então o limite será
+ infinito, ou - infinito. No seu caso, ele será menos infinito.
2º Caso, se houver uma divisão de polinômio que tende para mais ou menos infinito, e tiver o maior grau em baixo (ou seja, no denominador) então o limite será
zero. POis, a função de baixo cresce muito rápido, levando o limite pra zero.
3º Caso, se houver uma divisão de polinômio que tende para mais ou menos infinito, e tiver o mesmo grau em cima (ou seja, no numerador) e em baixo (ou seja, no denominador) então
o limite será o coeficiente de maior grau do polinômio.

Espero que esse macete possa lhe ajudar.
Obs: Não esqueça de prestar atenção nos sinais
-
Janoca
- Usuário Dedicado

-
- Mensagens: 30
- Registrado em: Sex Jun 06, 2014 16:47
- Formação Escolar: GRADUAÇÃO
- Área/Curso: matemática
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Limites no infinito de funções racionais
por Ariane » Ter Out 21, 2008 21:33
- 1 Respostas
- 6534 Exibições
- Última mensagem por Molina

Qua Out 22, 2008 12:23
Cálculo: Limites, Derivadas e Integrais
-
- [limites no infinito]Limite no infinito de um ponto finito
por moyses » Ter Ago 30, 2011 12:45
- 3 Respostas
- 3371 Exibições
- Última mensagem por LuizAquino

Ter Ago 30, 2011 18:57
Cálculo: Limites, Derivadas e Integrais
-
- [Limites] Ajuda com limites no infinito e continuidade
por umbrorz » Dom Abr 15, 2012 00:54
- 3 Respostas
- 4575 Exibições
- Última mensagem por umbrorz

Seg Abr 16, 2012 11:46
Cálculo: Limites, Derivadas e Integrais
-
- [LIMITES] Dúvida em questão de Limites no infinito
por Jacques » Ter Jul 12, 2016 21:42
- 4 Respostas
- 7312 Exibições
- Última mensagem por vitor_jo

Qua Jul 13, 2016 16:51
Cálculo: Limites, Derivadas e Integrais
-
- Limites no infinito
por felipe_ad » Sáb Abr 24, 2010 15:00
- 3 Respostas
- 5391 Exibições
- Última mensagem por MarceloFantini

Dom Abr 25, 2010 02:27
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Thassya - Sáb Out 01, 2011 16:20
1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?
2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?
3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Neperiano - Sáb Out 01, 2011 19:46
Ola
Qual as suas dúvidas?
O que você não está conseguindo fazer?
Nos mostre para podermos ajudar
Atenciosamente
Assunto:
[Função] do primeiro grau e quadratica
Autor:
joaofonseca - Sáb Out 01, 2011 20:15
1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.
Em

substitui-se
m, substitui-se
y e
x por um dos pares ordenados, e resolve-se em ordem a
b.
2)Na equação

não existem zeros.Senão vejamos
Completando o quadrado,
As coordenadas do vertice da parabola são
O eixo de simetria é a reta

.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.
f(-7)=93
f(10)=59
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.