• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Altura relativa e comprimento de segmento

Altura relativa e comprimento de segmento

Mensagempor baloso » Dom Jun 01, 2014 16:32

Opa, tem um exercício aqui que eu não sei se fiz corretamente, alguem pode dar uma checada? obg
1 - Dado os vértices de um triângulo, A(2,1), B(-1,1) e C (3,2), determine o comprimento da altura relativa ao lado AC. Calcule o comprimento de AC e a área do triângulo.
Aqui minha resolução:
comprimento de AC:
dAC^2 = (3-2)^2 + (2-1)^2
dAC^2 = (1)^2 + (1)^2
dAC = \sqrt[]{2}

Agora plotando o grafico do triangulo ficaria algo assim:
Imagem
Para achar a área do triângulo, eu tenho que ter a altura certo, a altura desse triângulo é a distância do ponto C à reta que passa pelos pontos A e B?
Foi isso que eu fiz, achei a equação da reta que passa por A e B:
|-1 1 1 | -1 1
| 2 1 1 | 2 1 = 0
| x y 1 | x y

Resolvendo:
[(-1*1*1) + (1*1*x) + (1*2*y)] - [(1*2*1) + (-1*1*y) + (1*1*x)] = 0
[-1+x+2y] - [2+(-y)+x] = 0
-1 + x + 2y -2 + y - x = 0
3y - 3 = 0 (eq. geral da reta q passa por A e B) -> Essa eq. pode ter x nulo?

Agora fazendo a distancia entre o ponto C e a eq. da reta que passa por A e B, para achar a altura:
d = \frac{|0*3 + 3*2 +(-3)|}{\sqrt[]{0^2 + 3^2}}
d = 1, logo h = 1

Agora achando a base, que seria a distancia de B a A?
dBA ^2 = (-1-2)^2 + (1-1)^2
dBA ^2 = (-3)^2 + (o)^2
dBA = \sqrt[]{9}
dBA = 3
logo base = 3

Agora fazendo a área:
Area = \frac{3*1}{2}
Area = \frac{1}{2}

E agora como achar a altura relativa ao lado AC?
baloso
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Sex Abr 25, 2014 18:54
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando

Re: Altura relativa e comprimento de segmento

Mensagempor DanielFerreira » Qua Jul 16, 2014 21:34

Baloso,
seu raciocínio parece-me correto. Cometeste apenas um erro ao digitar a área.

Para encontrar a área do triângulo poderíamos fazer da seguinte forma:

\\ S = |D| \cdot \frac{1}{2} \\\\ S = \begin{vmatrix}x_a & y_a & 1 \\ x_b & y_b & 1 \\ x_c & y_c & 1 \end{vmatrix} \cdot \frac{1}{2} = \\\\ S = \begin{vmatrix}2 & 1 & 1 \\ - 1 & 1 & 1 \\ 3 & 2 & 1 \end{vmatrix} \cdot \frac{1}{2} = \\\\ S = 3 \cdot \frac{1}{2} \\\\ \boxed{S = \frac{3}{2}}


Para encontrar a altura relativa a AC:

- Encontre a equação da reta AC;
- Calcule a distância do ponto B à reta de AC aplicando a fórmula d = \frac{|ax_0 + by_0 + c|}{\sqrt{a^2 + b^2}}.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Proporcionalidade
Autor: silvia fillet - Qui Out 13, 2011 22:46

Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.


Assunto: Proporcionalidade
Autor: silvia fillet - Sáb Out 15, 2011 10:25

POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?

P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50

P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25


P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833


4/6 =10/15 =14/21 RAZÃO = 2/3

SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA


Assunto: Proporcionalidade
Autor: ivanfx - Dom Out 16, 2011 00:37

utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.


Assunto: Proporcionalidade
Autor: Marcos Roberto - Dom Out 16, 2011 18:24

Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.

Você conseguiu achar o dia em que caiu 15 de novembro de 1889?


Assunto: Proporcionalidade
Autor: deiasp - Dom Out 16, 2011 23:45

Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 06:23

Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 07:18

Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 07:40

Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias

44242:7 = 6320 + resto 2

è assim, nâo sei mais sair disso.


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 10:24

que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta


Assunto: Proporcionalidade
Autor: Kiwamen2903 - Seg Out 17, 2011 19:43

Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:


De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.

De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.

De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.

Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.