• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Taxa de Variação - Derivadas

Taxa de Variação - Derivadas

Mensagempor andermeir » Sex Mai 30, 2014 16:44

Olá, sou novo no forúm então desculpem se estiver na área errada.

Peço que me ajudem com a seguinte questão:

"Esta semana uma fábrica está produzindo 50 unidades de um determinado produto e a produção está crescendo a uma taxa de 2 unidades por semana. Se c for o custo total da produção de x unidades e c(x) = 0,08x^3 – x^2 + 10x + 48, ache a taxa corrente segundo o qual o custo de produção está crescendo."

Tentei o seguinte:

dC/dP=dC/dU*dU/dt

Onde dC/dU seria a derivada do custo total em relação a unidade.

c(x) = 0,08x^3 – x^2 + 10x + 48

dC/dU= 0,24x^2 - 2x + 10

Em seguida usei como du/dt a equação (50+2x) retirada do enunciado.

Fiz a substituição:

dc/dp= (0,24x^2 - 2x + 10)*(50+2x)

O resultado obtido foi:

0,48x^3+8x^2-80x+500


Gostaria de saber se fiz certo, ou se deveria ter derivado esse (50+2x). Grato desde já!
andermeir
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Sex Mai 30, 2014 16:17
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 12 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.