• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Cálculo Diferencial e Integral I] Limite - Urgente!

[Cálculo Diferencial e Integral I] Limite - Urgente!

Mensagempor Pessoa Estranha » Ter Mai 27, 2014 23:34

Boa noite. Preciso de ajuda para calcular o seguinte limite:

\lim_{x\rightarrow -2} \frac{-2+\sqrt[3]{2-3x}}{1+\sqrt[3]{3+2x}}

Tentei de diversas formas, mas não consigo "sumir" com a indeterminação (denominador igual à zero).

Por favor, ajudem!!!!!!!!!!!!!

Muito Obrigada!
Pessoa Estranha
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 262
Registrado em: Ter Jul 16, 2013 16:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: [Cálculo Diferencial e Integral I] Limite - Urgente!

Mensagempor alienante » Qua Mai 28, 2014 09:16

\lim_{ x\rightarrow-2}\frac{-2+\sqrt[3]{2-3x}}{1+\sqrt[3]{3+2x}}=\lim_{ x\rightarrow-2}\frac{-2+\sqrt[3]{2-3x}}{1+\sqrt[3]{3+2x}}\frac{(1-\sqrt[3]{3+2x}+\sqrt[3]{{(3+2x)}^{2}})}{(1-\sqrt[3]{3+2x}+\sqrt[3]{{(3+2x)}^{2}})}=\lim_{x\rightarrow -2}\frac{(-2+\sqrt[3]{2-3x})(1-\sqrt[3]{3+2x}+\sqrt[3]{{(3+2x)}^{2}})}{1-3+2x}=\frac{(-2+2)(1+1+1)}{1-3-4}
alienante
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 43
Registrado em: Seg Nov 25, 2013 19:18
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: [Cálculo Diferencial e Integral I] Limite - Urgente!

Mensagempor Pessoa Estranha » Qua Mai 28, 2014 22:45

Olá! Obrigada pela ajuda! :y:
Pessoa Estranha
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 262
Registrado em: Ter Jul 16, 2013 16:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.