por kesinhazzz » Seg Dez 14, 2009 16:21
Um helicóptero está parado a 50 m de altura, sobre um terreno plano. Uma corda com
8 m de comprimento, presa ao helicóptero, sustenta um contêiner de 2 m x 2 m x 2 m.
Um holofote, fixo sob o helicóptero, junto à corda, lança um facho de luz perpendicular
ao solo, formando uma área iluminada pela curva de equação x2 + y2 = 2.500.
A) Considerando essas informações, FAÇA um esboço do desenho mostrando a situação
descrita.
B) Num determinado instante, o helicóptero começa a descer verticalmente, a uma taxa
de 2 m/s .
Assim sendo, CALCULE a área da superfície do solo iluminada pelo holofote, no
momento em que o contêiner tocar o solo.
Tá, é uma equação da elipse, mas quando eu faço x²/a² + y²/b²=1, a e b têm o mesmo valor, 50.
Daí não dá pra ser uma elipse, pois a é a hipotenusa e b o cateto junto com c (metade da distância entre os focos) do triângulo retângulo formado no interior da cônica, certo?
Não entendi! Me ajuda a fazer?
-
kesinhazzz
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Seg Dez 14, 2009 16:05
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por Elcioschin » Ter Dez 15, 2009 13:31
Vc está enganado quanto à curva:
x² + y² = 500 ---> x² + y² = (10*V5)² ----> Equação de uma CIRCUNFERÊNCIA de raio R = 10*V5
Seja A o ângulo que o holofote faz com a vertical ----> tgA = R/H ----> tgA = 10*V5/50 ----> tgA = V5/5
Este ângulo é sempre constante. No momento em que o container atinge o solo h = 8:
tgA = r/h ----> V5/5 = r/8 ----> r = 8*V5/5 ----> Raio do novo círculo iluminado.
S = pi*r² ----> S = pi*(8*V5/5)² ----> S = 64*pi/5
-
Elcioschin
- Colaborador Voluntário

-
- Mensagens: 624
- Registrado em: Sáb Ago 01, 2009 10:49
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia
- Andamento: formado
Voltar para Geometria Analítica
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- identificação de uma cônica
por Danilo » Qua Jan 16, 2013 10:16
- 1 Respostas
- 1826 Exibições
- Última mensagem por young_jedi

Qua Jan 16, 2013 16:21
Geometria Analítica
-
- Barraca cônica
por Luiz 2017 » Sex Set 22, 2017 20:40
- 0 Respostas
- 1150 Exibições
- Última mensagem por Luiz 2017

Sex Set 22, 2017 20:40
Cálculo: Limites, Derivadas e Integrais
-
- [hipérbole / cônica] Funções
por Cleyson007 » Sáb Set 06, 2008 01:32
- 1 Respostas
- 2654 Exibições
- Última mensagem por admin

Ter Set 09, 2008 15:35
Funções
-
- forma uma pilha cônica
por Ana Maria da Silva » Sáb Set 28, 2013 14:22
- 3 Respostas
- 4195 Exibições
- Última mensagem por Man Utd

Sáb Set 28, 2013 20:13
Cálculo: Limites, Derivadas e Integrais
-
- [conica] achar a equação da parábola
por Ge_dutra » Sáb Mar 16, 2013 21:47
- 4 Respostas
- 3271 Exibições
- Última mensagem por Ge_dutra

Qua Abr 03, 2013 00:06
Geometria Analítica
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.