• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Racionalização

Racionalização

Mensagempor aleson94 » Sex Mai 16, 2014 21:57

Como racionalizar essa equação do arquivo anexado?
Anexos
Sem Título-1.jpg
Equação
aleson94
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Sex Mai 16, 2014 21:37
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Racionalização

Mensagempor Russman » Sex Mai 16, 2014 22:54

Note que dados dois Reais quaisquer a e b é verdade que (a+b)(a-b) = a^2 - b^2.
O produto da soma com a diferença é a diferença dos quadrados.

Podemos tomar proveito deste fato nas sua frações. Façamos \sqrt{a} = \sqrt{2+x} e \sqrt{b} = \sqrt{2-x}.

Assim, sua operação se transforma em

\frac{1}{\sqrt{a}-\sqrt{b}}-\frac{1}{\sqrt{a}+\sqrt{b}}

de onde

\frac{1}{\sqrt{a}-\sqrt{b}}-\frac{1}{\sqrt{a}+\sqrt{b}} = \frac{\sqrt{a}+\sqrt{b}-(\sqrt{a}-\sqrt{b})}{(\sqrt{a}-\sqrt{b})(\sqrt{a}+\sqrt{b})}

Tente prosseguir.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}