• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Não consigo achar o limite

Não consigo achar o limite

Mensagempor CrazzyVi » Sáb Nov 14, 2009 13:34

Boa tarde, não estou consegindo achar esse limite: \lim_{x\rightarrow\infty}\sqrt{x+\sqrt{x}}-\sqrt{x}
E meu professor não pertime l'hopital na prova
jah tentei racionalizar, dividir por [text]\sqrt{x}[/text] e não to cosegindo aí achei esse forum e espero q possam me ajudar
o resultado tem q ser 1/2
obrigado desde jah
CrazzyVi
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Sáb Nov 14, 2009 11:18
Formação Escolar: GRADUAÇÃO
Área/Curso: Bacharel em Matemática
Andamento: cursando

Re: Não consigo achar o limite

Mensagempor thadeu » Seg Nov 16, 2009 13:42

Vou mexer apenas com a expressão para reduzir espaço, ok!!!

Multiplicando por \frac{\sqrt{x+\sqrt{x}}+\sqrt{x}}{\sqrt{x+\sqrt{x}}+\sqrt{x}}

\sqrt{x+\sqr{x}}-\sqrt{x}\,.\frac{\sqrt{x+\sqrt{x}}+\sqrt{x}}{\sqrt{x+\sqrt{x}}+\sqrt{x}}=\frac{x+\sqrt{x}-x}{\sqrt{x+\sqrt{x}}+\sqrt{x}}=\frac{\sqrt{x}}{\sqrt{x+\sqrt{x}}+\sqrt{x}}

Agora, no denominador, vamos colocar x em evidência na primeira raiz:

\sqrt{x+\sqrt{x}}+\sqrt{x}=\sqrt{x(1+\frac{1}{\sqrt{x}})}+\sqrt{x}=\sqrt{x}(\sqrt{1+\frac{1}{\sqrt{x}}})+\sqrt{x}

Colocando \sqrt{x} em evidência, o denominador da fração fica:
\sqrt{x}(\sqrt{1+\frac{1}{\sqrt{x}}}+1)

Voltando para o limite:

lim_{x \to \infty}\sqrt{x+\sqrt{x}}-\sqrt{x}=lim_{x \to \infty} \frac{\sqrt{x}}{\sqrt{x}(\sqrt{1+\frac{1}{\sqrt{x}}}+1)}

Simplificando e substituindo \infty:
lim_{x \to \infty}\frac{1}{\sqrt{1+\frac{1}{\sqrt{x}}}+1}=\frac{1}{\sqrt{1+\frac{1}{\infty}}+1}=\frac{1}{\sqrt{1+0}+1}=\frac{1}{2}



Confira sua resposta. Um abraço!
thadeu
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 69
Registrado em: Seg Out 19, 2009 14:05
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado

Re: Não consigo achar o limite

Mensagempor CrazzyVi » Qui Dez 10, 2009 14:28

Muito obrigada Thadeu, gostaria de ter agradecido antes mas só estou vendo a resposta agora pois meu pc estava quebrado.
CrazzyVi
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Sáb Nov 14, 2009 11:18
Formação Escolar: GRADUAÇÃO
Área/Curso: Bacharel em Matemática
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}