• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Derivadas de Funções

Derivadas de Funções

Mensagempor METEOS » Qua Mai 07, 2014 17:20

Boa tarde,

Tenho uma dúvida no exercício 13, e gostava que alguém me explicasse como se faz:

http://postimg.org/image/b9hzq643z/

(O exercício encontrasse neste site)

Obrigado
Luís Soares
METEOS
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Seg Set 30, 2013 17:04
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Ciencias
Andamento: cursando

Re: Derivadas de Funções

Mensagempor Russman » Qua Mai 07, 2014 19:54

Nesses exercícios de "...dada reta tangente determine a função tal que..." ou "...dada função calcule a reta tangente no pon..." é conveniente calcular uma fórmula simples que, dado ponto, você é capaz de calcular rapidamente a equação da reta tangente ao gráfico da função, ou vise-versa.

Seja a equação da reta y(x) = ax+b, a,b \in \mathbb{R}. Sabemos que, se essa reta é tangente ao gráfico de f(x) no ponto (x_0,f(x_0)), então

a = \frac{\mathrm{d} f(x)}{\mathrm{d} x} \left   \right |_{x=x_0} = f'(x_0).

Isto é, a constante a é a derivada da função calculada no ponto de tangência.

Daí, como em x=x_0 temos de ter y(x_0) = f(x_0), então

y(x_0) = ax_0 + b = f(x_0) \Rightarrow b = f(x_0) - x_0 f'(x_0)

e, portanto,

y(x) = f'(x_0) (x-x_0) + f(x_0)

é a reta tangente a f(x) no ponto x=x_0.

Já que no exercício diz que y=-3x-1 em x=-2 então, por comparação,

f'(-2)x +2f'(-2) + f(-2) = -3x -1

de onde f'(-2) = -3 e 2f'(-2) + f(-2) = -1 \Rightarrow -6 + f(-2) = -1 \Rightarrow  f(-2) = 5.

Agora, como você sabe que o gráfico é de uma parábola, tome f(x) = ax^2 + bx+c de onde f'(x) =2ax + b. OBS: este a e b não tem nada que ver com a dedução da equação da reta tangente que fizemos anteriormente.
Como e visível que o gráfico passa pelo ponto (0,0), então c=0.
Substituindo na relação encontrada, vem que

2.a.(-2) + b = -3 \Rightarrow -4a + b = -3
a(-2)^2 + b.(-2) + 0 = -5 \Rightarrow 4a-2b=5

Chegamos em um sistema 2x2 em a e b. Podemos resolve-lo de diversas formas. Eu acho mais rápido somar as duas equações, já que o coeficiente de a automaticamente se cancela. Fazendo isso,

-b = 2 \Rightarrow  b=-2

e, portanto,

a = \frac{-3 +2}{-4} = \frac{1}{4}.

Logo, a parábola é f(x) = \frac{1}{4} x^2 -2x
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}