• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Lei dos cossenos

Lei dos cossenos

Mensagempor kandara » Qua Abr 30, 2014 17:35

Olá, eu aprendi ontem como calcular os lados de triângulos com a Lei dos Cossenos e confesso que não está tão difícil, mas em um dos problemas, uma dúvida me surgiu quanto ao resultado, vejam:

Ex 1. Dados os seguintes elementos de um triângulo ABC: Â = 30º, AB = 8 m, CB = 5 m. Calcule AC.
Certo, eu então desenhei um triângulo qualquer com este ângulo agudo de 30 graus para visualizar melhor o problema, eis o triângulo mal feito:
Imagem

Certo, então o lado b que quero achar, até aí tudo bem, eu fiz o cálculo utilizando a lei dos cossenos:

b² = a² + c² - 2.b.c.cos30°
b² = 8² + 5² - 2.8.5.cos30°
b² = 64 + 25 - 80.cos30°
b² = 89 - 80 cos30
b² = 89 - 40?3
b² = 49?3
b² = 84,87
b = ?84,47
b= 9,19 cm aprox.

Massss... Fui conferir o gabarito desse exercício o o resultado deu: x= 4?3 + 3
Daí eu fiz 4 vezes raiz de 3 mais 3 e deu aproximadamente 9,92. Um resultado maior que o meu, a conta no gabarito está assim:
Imagem

E eu confesso que não entendi bem como chegaram nesse resultado, podem me explicar?
Obrigada.
kandara
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Sex Abr 04, 2014 15:19
Formação Escolar: EJA
Andamento: cursando

Re: Lei dos cossenos

Mensagempor Russman » Qua Abr 30, 2014 18:54

Pra um triângulo de vértices A, B e C, lados , respectivamente opostos aos pontos, a,b e c a Lei dos Cossenos pode ser escrita de 3 formas:

a^2 = b^2 + c^2 - 2bc \cos(\widehat{A})
b^2 = a^2 + c^2 - 2ac \cos(\widehat{B})
c^2 = a^2 + b^2 - 2ab \cos(\widehat{C})

O ângulo que alimenta o cossenos nas formas é o ângulo do vértice oposto ao lado que aparece destacado no lado esquerdo.

Veja que você aplicou a fórmula "para b" atribuindo o ângulo de 30° ao vértice B, que está errado. O ângulo de 30° refere-se ao vértice A.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}