por ilane » Sáb Abr 26, 2014 13:58
ilane escreveu:\int_{-1}^{1} xe^x^2 dx
tenho que calcular essa integral e cheguei na seguinte resposta gostaria de saber se está certa ou não
\int_{-1}^{1} e ^x^2 x ^x^2 . dx \approx1.50033+0,691773i
uum colega me deu a seguinte resposta :
santhiago escreveu:Numero complexo ??
A integral é essa

? Se for nem precisa fazer contas , a resposta é zero . A teoria abaixo justifica isto .
Fixemos

e definamos
![f : [-a,a] \mapsto \mathbb{R} f : [-a,a] \mapsto \mathbb{R}](/latexrender/pictures/5f54e28a1094d492221c71c6497580d4.png)
contínua (ou número de descontinuidade finito )[hipótese para garanti a integrabilidade de f ] e além disso suponha

uma função ímpar , isto é
![f(x) = - f(-x) \forall x \in [-a,a] f(x) = - f(-x) \forall x \in [-a,a]](/latexrender/pictures/6ae07197d28f59849fad10a691c8a1e7.png)
. Agora veja ...

.
Como f é impar

. Fazendo

, temos

e os limites de integração

.Assim ,

. E portanto ,

.
Conclusão : o resultado de integrais definidas (cujos limites de integração são simétricos um do outro ) em relação a função impares (que satisfaz as condições de ser integrável = ser contínua ou contínua por partes ) será
sempre zero .
maia na pergunta não tem x ^3 gostaria de saber se mesmo assim estar certo a resposta de santhiago ou a outara resposta
-
ilane
- Usuário Ativo

-
- Mensagens: 17
- Registrado em: Ter Abr 08, 2014 10:53
- Formação Escolar: GRADUAÇÃO
- Área/Curso: quimica
- Andamento: cursando
por Russman » Sáb Abr 26, 2014 14:28
A função

é também ímpar.
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Integral] Estou com dificuldade para resolver esta integral
por Paulo Perez » Qui Out 03, 2013 12:22
- 2 Respostas
- 4134 Exibições
- Última mensagem por Paulo Perez

Sex Out 04, 2013 16:32
Cálculo: Limites, Derivadas e Integrais
-
- [INTEGRAL] Integral por partes! Alguem pode me ajudar?
por mih123 » Qua Jan 16, 2013 20:18
- 3 Respostas
- 4428 Exibições
- Última mensagem por adauto martins

Qua Out 22, 2014 09:11
Cálculo: Limites, Derivadas e Integrais
-
- [Integral] Resolver Integral definida com trigonometria
por rodrigoboreli » Dom Set 07, 2014 01:02
- 1 Respostas
- 4213 Exibições
- Última mensagem por adauto martins

Sex Out 17, 2014 12:39
Cálculo: Limites, Derivadas e Integrais
-
- [Integral] Integral funçao trigonometrica
por ewald » Qua Ago 17, 2011 22:33
- 2 Respostas
- 2704 Exibições
- Última mensagem por ewald

Qui Ago 18, 2011 00:54
Cálculo: Limites, Derivadas e Integrais
-
- [Integral] Integral funçao trigonometrica
por ewald » Sáb Ago 20, 2011 17:20
- 2 Respostas
- 2721 Exibições
- Última mensagem por LuizAquino

Dom Ago 21, 2011 21:14
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 12 visitantes
Assunto:
cálculo de limites
Autor:
Hansegon - Seg Ago 25, 2008 11:29
Bom dia.
Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado
\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]
Assunto:
cálculo de limites
Autor:
Molina - Seg Ago 25, 2008 13:25
Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.
Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo.
Caso ainda não tenha dado uma

, avisa que eu resolvo.
Bom estudo!
Assunto:
cálculo de limites
Autor:
Guill - Dom Abr 08, 2012 16:03

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.