• Anúncio Global
    Respostas
    Exibições
    Última mensagem

conjuntos

conjuntos

Mensagempor israel jonatas » Seg Dez 02, 2013 12:08

Quatro amigos, Abel, Bruno, Caio e Daniel, são colecionadores de figurinhas. Sabe-se que Abel possui metade da quantidade de figurinha de Daniel mais um terço da quantidade de figurinhas de Caio; que Bruno possui o dobro da quantidade de Caio mais quarta parte da quantidade de figurinhas de Daniel; que Daniel tem 60 figurinhas, e que Abel e Bruno possuem a mesma quantidade de figurinhas. Os quatro amigos possuem, juntos:

a) 125
b) 128
c) 130
d) 132
e) 135
israel jonatas
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Qui Mar 14, 2013 13:04
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: conjuntos

Mensagempor Iniciante » Ter Abr 01, 2014 03:41

Considerando: Abel = A, Bruno = B, Caio = C, e Daniel = D, temos:
A =\frac{D}{2} + \frac{C}{3}     \;\;\;\;\;\;\;\;\;\;\;\;\;\;B = 2C +\frac{D}{4}    \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;C = ?


Pelo enunciado, temos D = 60 e A = B. Então:
\frac{D}{2} + \frac{C}{3}  =  2C + \frac{D}{4}

Substituindo:
30 +  \frac{C}{3} = 2C + 15
=> 2C -  \frac{C}{3} = 15

Por mmc, obtemos:
\frac{6C - C}{3} = 15
\;\;\;\;\;\;=> 5C = 45
\;\;\;\;\;\;\;\;\;\;=> C = 9

Logo, os quatro amigos possuem, juntos:
33 + 33 + 60 + 9 = 135

Alternativa e)
Iniciante
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Sex Mar 28, 2014 18:57
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: conjuntos

Mensagempor israel jonatas » Sáb Abr 19, 2014 11:10

Iniciante escreveu:Considerando: Abel = A, Bruno = B, Caio = C, e Daniel = D, temos:
A =\frac{D}{2} + \frac{C}{3}     \;\;\;\;\;\;\;\;\;\;\;\;\;\;B = 2C +\frac{D}{4}    \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;C = ?


Pelo enunciado, temos D = 60 e A = B. Então:
\frac{D}{2} + \frac{C}{3}  =  2C + \frac{D}{4}

Substituindo:
30 +  \frac{C}{3} = 2C + 15
=> 2C -  \frac{C}{3} = 15

Por mmc, obtemos:
\frac{6C - C}{3} = 15
\;\;\;\;\;\;=> 5C = 45
\;\;\;\;\;\;\;\;\;\;=> C = 9

Logo, os quatro amigos possuem, juntos:
33 + 33 + 60 + 9 = 135

Alternativa e)
Iniciante escreveu:Considerando: Abel = A, Bruno = B, Caio = C, e Daniel = D, temos:
A =\frac{D}{2} + \frac{C}{3}     \;\;\;\;\;\;\;\;\;\;\;\;\;\;B = 2C +\frac{D}{4}    \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;C = ?


Pelo enunciado, temos D = 60 e A = B. Então:
\frac{D}{2} + \frac{C}{3}  =  2C + \frac{D}{4}

Substituindo:
30 +  \frac{C}{3} = 2C + 15
=> 2C -  \frac{C}{3} = 15

Por mmc, obtemos:
\frac{6C - C}{3} = 15
\;\;\;\;\;\;=> 5C = 45
\;\;\;\;\;\;\;\;\;\;=> C = 9

Logo, os quatro amigos possuem, juntos:
33 + 33 + 60 + 9 = 135

Alternativa e)


Valeu !
israel jonatas
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Qui Mar 14, 2013 13:04
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Conjuntos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?