• Anúncio Global
    Respostas
    Exibições
    Última mensagem

calculo de limites por propriedades

calculo de limites por propriedades

Mensagempor RogerEder » Ter Abr 15, 2014 10:44

estou calculando um limite e não consigo me lembrar como fatorar uma expressão elevada a quinta potência. Essa é a expressão :\lim_{x\rightarrow-2}\frac{x^5 + 32}{x+2}
não preciso da resolução do exercício, só lembrar como se faz a fatoração para q eu quebre a cabeça para resolver, até por que é esse meu método de estudo.

agradeço quem poder ajudar.
Abraço!!
RogerEder
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Ter Abr 15, 2014 10:23
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: calculo de limites por propriedades

Mensagempor e8group » Qua Abr 16, 2014 12:00

Acho mais fácil ao invés de fazer as mesmas contas para fatorar x^2  - a^2 , x^3 - a^3 , x^4 - a^4 , x^5 - a^5 ,  x^6 - a^6 , ... e bla bla bla ... é tentar deduzir uma fórmula para x^n - a^n com n = 2,3,4,5,... .

A primeira expressão é igual a (x-a)(x+a), esta fatoração já é conhecida ,entretanto para fins didáticos , dividindo a expressão x^2  - a^2 por x- a , obteremos o resultado .Qual o método utilizar ?? Um método seria o dá chave .

De forma análoga , para as demais expressões ,divida elas por x - a . Assim ,

x^3  -a^3 =  (x-a)(x^2  +ax + a^2)

...

Fazendo o mesmo procedimento para x^n - a^n , observamos que

x^n - a^n = (x-a)(x^{n-1}  +    \hdots      +   x^2 a^{n-3} + xa^{n-2} +   a^{n-1}  ) = (x-a)[ x^{(n-1) -0} \cdot a^{0}   +  x^{(n-1 )-1}  \cdot a^{1] + x^{(n-1 )-2}  \cdot a^{2] + \hdots  + x^{(n-1 )-(n-2)}  \cdot a^{n-2}  + x^{(n-1) -(n-1)} \cdot a^{n-1} . A princípio , encontramos uma fórmula um pouco difícil de memorizar . Entretanto , a expressão entre colchetes , pode ser escrita sob a forma compacta \sum_{k=0}^{n-1} x^{n-1 -k} a^{k} , e assim obtemos a fórmula

\boxed{x^n - a^n = (x-a) \sum_{k=0}^{n-1} x^{n-1 -k} \cdot  a^{k}} .

Exemplo :

Para n = 2 ,

x^2 - a^2 = (x-a) \sum_{k=0}^{2-1} x^{2-1 -k} \cdot  a^{k}} = (x-a) \sum_{k=0}^{1} x^{1 -k} \cdot  a^{k}} = (x-a)(x^{1-0} a^0 + x^{1-1} a^1) = (x-a)(x+a)
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: calculo de limites por propriedades

Mensagempor e8group » Qua Abr 16, 2014 12:03

Só acrescentando , se a > 0 e n é impar , teremos x^n + a^n =   x^n - (-a)^n .

Logo x^5 +  32 = x^5 + 2^5 =  x^5 - (-2)^5 .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 12 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?