por Russman » Ter Abr 15, 2014 22:28
Equações diferenciais do tipo

são o típico caso de fazermos um inset de

. Você obterá exponenciais complexos que, com a devida combinação linear, serão funções harmônicas.
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
Voltar para Equações
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Equações diferenciais - problema de valor inicial
por emsbp » Qui Abr 12, 2012 18:14
- 0 Respostas
- 963 Exibições
- Última mensagem por emsbp

Qui Abr 12, 2012 18:14
Cálculo: Limites, Derivadas e Integrais
-
- Integrais (problemas de valor inicial)
por Anne2011 » Sex Set 16, 2011 16:26
- 4 Respostas
- 2220 Exibições
- Última mensagem por Anne2011

Sex Set 16, 2011 18:53
Cálculo: Limites, Derivadas e Integrais
-
- [PROBLEMAS DE MODELAGEM] EQUAÇÕES DIFERENCIAIS ORDINÁRIAS
por DanielGL » Ter Mai 03, 2016 14:55
- 1 Respostas
- 3139 Exibições
- Última mensagem por adauto martins

Sex Mai 06, 2016 19:12
Cálculo: Limites, Derivadas e Integrais
-
- [Equação diferencial] Problema de valor inicial
por Aliocha Karamazov » Qua Fev 15, 2012 23:34
- 2 Respostas
- 1679 Exibições
- Última mensagem por Aliocha Karamazov

Qui Fev 23, 2012 23:43
Cálculo: Limites, Derivadas e Integrais
-
- (calculo III) resolva o seguinte problema de valor inicial
por liviabgomes » Qui Dez 01, 2011 14:59
- 4 Respostas
- 2197 Exibições
- Última mensagem por liviabgomes

Seg Dez 05, 2011 11:36
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
cálculo de limites
Autor:
Hansegon - Seg Ago 25, 2008 11:29
Bom dia.
Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado
\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]
Assunto:
cálculo de limites
Autor:
Molina - Seg Ago 25, 2008 13:25
Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.
Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo.
Caso ainda não tenha dado uma

, avisa que eu resolvo.
Bom estudo!
Assunto:
cálculo de limites
Autor:
Guill - Dom Abr 08, 2012 16:03

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.