• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Quantos P primos existe para N natural nessas condições?

Quantos P primos existe para N natural nessas condições?

Mensagempor BrenoNaval » Sex Abr 11, 2014 12:05

1+p+p^2+p^3+p^4=n^2 .Quantos P primos existe para N natural nessas condições?
1 etapa:
Obs.:Vou deixar,algumas de minhas descobertas,espero que possa ajudar.
.(p^5-1)=(p-1)(p^4+p^3+p^2+p+1)
.p^5-1=(p-1)n^2
.n^2= \frac{p^5-1}{p-1}
.\frac{(p-1)!+1}{p}

2 etapa:
.p^5-1=0(modp-1)
.p^5=1(modp-1)
.p^5=p(mod5) =>a^p=a(modp) / p primo,a qualquer.
.p^4=1(mod5) =>a^fi(n)=1(modn) / mdc(a,n)=1.

Obs:a partir da segunda etapa o símbolo = (símbolo de congruência)

.Possíveis algarismos das unidades de n.:{1,5,9},p.:{1,3,7,9}
BrenoNaval
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Dom Mar 30, 2014 19:01
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Quantos P primos existe para N natural nessas condições?

Mensagempor Mattioli » Sex Jun 06, 2014 00:25

1 + p + p^2 + p^3 + p^4 = n^2

Pode-se organizar a equação da seguinte forma:
p(p^1 + p^2 + p^3 + 1) + 1 = n^2

Assim, tem-se uma relação de congruência modulo p, entre 1 e n^2: n^2 \equiv 1(mod p)

Pelo teorema de Euler, dado um número primo p e um número qualquer a, em que os dois são relativamente primos (ou seja, o mdc entre eles é 1), a relação de congruência a^(p-1) \equiv 1(mod p) é verdadeira.

Dessa forma, é fácil perceber que o número p que satisfaz essa congruência é o 3, já que a potência do n é 2 e o mesmo é congruente a 1.

Logo, a resposta é: 1 número primo p satisfaz essa equação.
Mattioli
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Sex Jun 06, 2014 00:15
Formação Escolar: ENSINO MÉDIO
Área/Curso: A Vida
Andamento: cursando


Voltar para Aritmética

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)